留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 5
May  2021

图(8)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  2151
  • HTML全文浏览量:  732
  • PDF下载量:  152
  • 被引次数: 0
Chao Gu, Wen-qi Liu, Jun-he Lian, and Yan-ping Bao, In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels, Int. J. Miner. Metall. Mater., 28(2021), No. 5, pp. 826-834. https://doi.org/10.1007/s12613-020-2223-9
Cite this article as:
Chao Gu, Wen-qi Liu, Jun-he Lian, and Yan-ping Bao, In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels, Int. J. Miner. Metall. Mater., 28(2021), No. 5, pp. 826-834. https://doi.org/10.1007/s12613-020-2223-9
引用本文 PDF XML SpringerLink
研究论文

高强度轴承钢中夹杂物引起疲劳机理的深入分析

  • Research Article

    In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels

    + Author Affiliations
    • A numerical study of stress distribution and fatigue behavior in terms of the effect of voids adjacent to inclusions was conducted with finite element modeling simulations under different assumptions. Fatigue mechanisms were also analyzed accordingly. The results showed that the effects of inclusions on fatigue life will distinctly decrease if the mechanical properties are close to those of the steel matrix. For the inclusions, which are tightly bonded with the steel matrix, when the Young’s modulus is larger than that of the steel matrix, the stress will concentrate inside the inclusion; otherwise, the stress will concentrate in the steel matrix. If voids exist on the interface between inclusions and the steel matrix, their effects on the fatigue process differ with their positions relative to the inclusions. The void on one side of an inclusion perpendicular to the fatigue loading direction will aggravate the effect of inclusions on fatigue behavior and lead to a sharp stress concentration. The void on the top of inclusion along the fatigue loading direction will accelerate the debonding between the inclusion and steel matrix.

    • loading
    • [1]
      P. Rycerz, A. Olver, and A. Kadiric, Propagation of surface initiated rolling contact fatigue cracks in bearing steel, Int. J. Fatigue, 97(2017), p. 29. doi: 10.1016/j.ijfatigue.2016.12.004
      [2]
      C. Gu, Y.P. Bao, P. Gan, M. Wang, and J.S. He, Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 623. doi: 10.1007/s12613-018-1609-4
      [3]
      N.K. Arakere, Gigacycle rolling contact fatigue of bearing steels: A review, Int. J. Fatigue, 93(2016), p. 238. doi: 10.1016/j.ijfatigue.2016.06.034
      [4]
      K. Shiozawa and L. Lu, Very high-cycle fatigue behaviour of shot-peened high-carbon–chromium bearing steel, Fatigue Fract. Eng. Mater. Struct., 25(2002), No. 8-9, p. 813. doi: 10.1046/j.1460-2695.2002.00567.x
      [5]
      C. Bathias and P.C. Paris, Gigacycle Fatigue in Mechanical Practice, CRC Press, Boca Raton, 2004.
      [6]
      U. Krupp, K. Koschella, and A. Giertler, The significance of grain size, segregations and inclusions for the very high cycle fatigue (VHCF) behavior of tempered martensitic steels, Procedia Struct. Integrity, 23(2019), p. 517. doi: 10.1016/j.prostr.2020.01.138
      [7]
      H.Y. Zheng, S.Q. Guo, M.R. Qiao, L.B. Qin, X.J. Zou, and Z.M. Ren, Study on the modification of inclusions by Ca treatment in GCr18Mo bearing steel, Adv. Manuf., 7(2019), No. 4, p. 438. doi: 10.1007/s40436-019-00266-1
      [8]
      W.J. Ma, Y.P. Bao, M. Wang, and D.W. Zhao, Influence of slag composition on bearing steel cleanness, Ironmaking Steelmaking, 41(2014), No. 1, p. 26. doi: 10.1179/1743281212Y.0000000096
      [9]
      W. Xiao, M. Wang, and Y.P. Bao, The research of low-oxygen control and oxygen behavior during RH process in silicon-deoxidization bearing steel, Metals, 9(2019), No. 8, art. No. 812. doi: 10.3390/met9080812
      [10]
      H.F. Xu, F. Yu, C. Wang, W.L. Zhang, J. Li, and W.Q. Cao, Comparison of microstructure and property of high chromium bearing steel with and without nitrogen addition, J. Iron Steel Res. Int., 24(2017), No. 2, p. 206. doi: 10.1016/S1006-706X(17)30029-8
      [11]
      Y. Xu, E.G. Wang, Z. Li, and A.Y. Deng, Effects of vertical electromagnetic stirring on grain refinement and macrosegregation control of bearing steel billet in continuous casting, J. Iron Steel Res. Int., 24(2017), No. 5, p. 483. doi: 10.1016/S1006-706X(17)30073-0
      [12]
      B. Shahriari, R. Vafaei, E.M. Sharifi, and K. Farmanesh, Aging behavior of a copper-bearing high-strength low-carbon steel, Int. J. Miner. Metall. Mater., 25(2018), No. 4, p. 429. doi: 10.1007/s12613-018-1588-5
      [13]
      S.X. Li, Effects of inclusions on very high cycle fatigue properties of high strength steels, Int. Mater. Rev., 57(2012), No. 2, p. 92. doi: 10.1179/1743280411Y.0000000008
      [14]
      A. Pineau and S. Forest, Effects of inclusions on the very high cycle fatigue behaviour of steels, Fatigue Fract. Eng. Mater. Struct., 40(2017), No. 11, p. 1694. doi: 10.1111/ffe.12649
      [15]
      T. Sakai, Y. Sato, and N. Oguma, Characteristic S–N properties of high‐carbon–chromium‐bearing steel under axial loading in long‐life fatigue, Fatigue Fract. Eng. Mater. Struct., 25(2002), No. 8-9, p. 765. doi: 10.1046/j.1460-2695.2002.00574.x
      [16]
      T. Sakai, M. Takeda, K. Shiozawa, Y. Ochi, M. Nakajima, T. Nakamura, and N. Oguma, Experimental reconfirmation of characteristic S–N property for high carbon chromium bearing steel in wide life region in rotating bending, J. Soc. Mater. Sci. Jpn., 49(2000), No. 7, p. 779. doi: 10.2472/jsms.49.779
      [17]
      H. Matsunaga, C. Sun, Y. Hong, and Y. Murakami, Dominant factors for very-high-cycle fatigue of high-strength steels and a new design method for components, Fatigue Fract. Eng. Mater. Struct., 38(2015), No. 11, p. 1274. doi: 10.1111/ffe.12331
      [18]
      U. Karr, Y. Sandaiji, R. Tanegashima, S. Murakami, B. Schönbauer, M. Fitzka, and H. Mayer, Inclusion initiated fracture in spring steel under axial and torsion very high cycle fatigue loading at different load ratios, Int. J. Fatigue, 134(2020), art. No. 105525. doi: 10.1016/j.ijfatigue.2020.105525
      [19]
      G.H. Gao, Q.Z. Xu, H.R. Guo, X.L. Gui, B.X. Zhang, and B.Z. Bai, Effect of inclusion and microstructure on the very high cycle fatigue behaviors of high strength bainite/martensite multiphase steels, Mater. Sci. Eng. A, 739(2019), p. 404. doi: 10.1016/j.msea.2018.10.073
      [20]
      D. Spriestersbach, P. Grad, and E. Kerscher, Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime, Int. J. Fatigue, 64(2014), p. 114. doi: 10.1016/j.ijfatigue.2014.03.003
      [21]
      F.P.E. Dunne, A.J. Wilkinson, and R. Allen, Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal, Int. J. Plast., 23(2007), No. 2, p. 273. doi: 10.1016/j.ijplas.2006.07.001
      [22]
      D.L. McDowell and F.P.E. Dunne, Microstructure-sensitive computational modeling of fatigue crack formation, Int. J. Fatigue, 32(2010), No. 9, p. 1521. doi: 10.1016/j.ijfatigue.2010.01.003
      [23]
      W.D. Musinski and D.L. McDowell, Simulating the effect of grain boundaries on microstructurally small fatigue crack growth from a focused ion beam notch through a three-dimensional array of grains, Acta Mater., 112(2016), p. 20. doi: 10.1016/j.actamat.2016.04.006
      [24]
      C.P. Przybyla and D.L. McDowell, Microstructure-sensitive extreme value probabilities for high cycle fatigue of Ni-base superalloy IN100, Int. J. Plast., 26(2010), No. 3, p. 372. doi: 10.1016/j.ijplas.2009.08.001
      [25]
      C.P. Przybyla, W.D. Musinski, G.M. Castelluccio, and D.L. McDowell, Microstructure-sensitive HCF and VHCF simulations, Int. J. Fatigue, 57(2013), p. 9. doi: 10.1016/j.ijfatigue.2012.09.014
      [26]
      G.M. Castelluccio and D.L. McDowell, Microstructure-sensitive small fatigue crack growth assessment: Effect of strain ratio, multiaxial strain state, and geometric discontinuities, Int. J. Fatigue, 82(2016), p. 521. doi: 10.1016/j.ijfatigue.2015.09.007
      [27]
      R. Prasannavenkatesan, J.X. Zhang, D.L. McDowell, G.B. Olson, and H.J. Jou, 3D modeling of subsurface fatigue crack nucleation potency of primary inclusions in heat treated and shot peened martensitic gear steels, Int. J. Fatigue, 31(2009), No. 7, p. 1176. doi: 10.1016/j.ijfatigue.2008.12.001
      [28]
      K. Gillner, M. Henrich, and S. Münstermann, Numerical study of inclusion parameters and their influence on fatigue lifetime, Int. J. Fatigue, 111(2018), p. 70. doi: 10.1016/j.ijfatigue.2018.01.036
      [29]
      K. Gillner and S. Münstermann, Numerically predicted high cycle fatigue properties through representative volume elements of the microstructure, Int. J. Fatigue, 105(2017), p. 219. doi: 10.1016/j.ijfatigue.2017.09.002
      [30]
      N. Vajragupta, P. Wechsuwanmanee, J. Lian, M. Sharaf, S. Münstermann, A. Ma, A. Hartmaier, and W. Bleck, The modeling scheme to evaluate the influence of microstructure features on microcrack formation of DP-steel: The artificial microstructure model and its application to predict the strain hardening behavior, Comput. Mater. Sci., 94(2014), p. 198. doi: 10.1016/j.commatsci.2014.04.011
      [31]
      C. Gu, J.H. Lian, Y.P. Bao, Q.G. Xie, and S. Münstermann, Microstructure-based fatigue modelling with residual stresses: Prediction of the fatigue life for various inclusion sizes, Int. J. Fatigue, 129(2019), art. No. 105158. doi: 10.1016/j.ijfatigue.2019.06.018
      [32]
      C. Gu, J.H. Lian, Y.P. Bao, and S. Münstermann, Microstructure-based fatigue modelling with residual stresses: Prediction of the microcrack initiation around inclusions, Mater. Sci. Eng. A, 751(2019), p. 133. doi: 10.1016/j.msea.2019.02.058
      [33]
      W.Q. Liu, J.H. Lian, N. Aravas, and S. Münstermann, A strategy for synthetic microstructure generation and crystal plasticity parameter calibration of fine-grain-structured dual-phase steel, Int. J. Plast., 126(2020), art. No. 102614. doi: 10.1016/j.ijplas.2019.10.002
      [34]
      Q.G. Xie, J.H. Lian, J.J. Sidor, F.W. Sun, X.C. Yan, C.Y. Chen, T.K. Liu, W.J. Chen, P. Yang, K. An, and Y.D. Wang, Crystallographic orientation and spatially resolved damage in a dispersion-hardened Al alloy, Acta Mater., 193(2020), p. 138. doi: 10.1016/j.actamat.2020.03.049
      [35]
      C. Gu, M. Wang, Y.P. Bao, F.M. Wang, and J.H. Lian, Quantitative analysis of inclusion engineering on the fatigue property improvement of bearing steel, Metals, 9(2019), No. 4, p. 476. doi: 10.3390/met9040476
      [36]
      Q.G. Xie, J.H. Lian, F.W. Sun, B. Gan, and Y.D. Wang, The lattice strain ratio in characterizing the grain-to-grain interaction effect and its specific insight on the plastic deformation of polycrystalline materials, J. Strain Anal. Eng. Des., 53(2018), No. 5, p. 353. doi: 10.1177/0309324718770935
      [37]
      Q. Xie, A.V. Bael, Y.G. An, J. Lian, and J.J. Sidor, Effects of the isotropic and anisotropic hardening within each grain on the evolution of the flow stress, the r-value and the deformation texture of tensile tests for AA6016 sheets, Mater. Sci. Eng. A, 721(2018), p. 154. doi: 10.1016/j.msea.2018.02.053
      [38]
      D. Brooksbank and K.W. Andrews, Tessellated stresses associated with some inclusions in steel, J. Iron Steel Inst., 207(1969), p. 474.
      [39]
      D. Brooksbank and K.W. Andrews, Thermal expansion of some inclusions found in steels and relation to tessellated stresses, J. Iron Steel Inst., 206(1968), p. 595.

    Catalog


    • /

      返回文章
      返回