留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 27 Issue 12
Dec.  2020
数据统计

分享

计量
  • 文章访问数:  975
  • HTML全文浏览量:  314
  • PDF下载量:  69
  • 被引次数: 0
Shu-qiang Jiao, Ming-yong Wang,  and Wei-li Song, Editorial for special issue on high-temperature molten salt chemistry and technology, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1569-1571. https://doi.org/10.1007/s12613-020-2225-7
Cite this article as:
Shu-qiang Jiao, Ming-yong Wang,  and Wei-li Song, Editorial for special issue on high-temperature molten salt chemistry and technology, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1569-1571. https://doi.org/10.1007/s12613-020-2225-7
引用本文 PDF XML SpringerLink
社论

高温熔盐化学与技术序言

  • Editorial

    Editorial for special issue on high-temperature molten salt chemistry and technology

    + Author Affiliations
    • loading
    • [1]
      D. Wang, S. Pang, C.Y. Zhou, Y. Peng, Z. Wang, and X.Z. Gong, Improve titanate reduction by electro-deoxidation of Ca3Ti2O7 precursor in molten CaCl2, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1618. doi: 10.1007/s12613-020-2165-2
      [2]
      B. Wang, C.Y. Chen, J.Q. Li, L.Z. Wang, Y.P. Lan, and S.Y. Wang, Solid oxide membrane-assisted electrolytic reduction of Cr2O3 in molten CaCl2, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1626. doi: 10.1007/s12613-020-2141-x
      [3]
      G.Z. Chen, Interactions of molten salts with cathode products in the FFC cambridge process, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1572. doi: 10.1007/s12613-020-2202-1
      [4]
      E. Ahmadi, R.O. Suzuki, T. Kikuchi, T. Kaneko, and Y. Yashima, Towards a sustainable technology for production of extra-pure Ti metal: electrolysis of sulfurized Ti(C,N) in molten CaCl2, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1635. doi: 10.1007/s12613-020-2162-5
      [5]
      Y.K. Wu, G.Q. Yan, S. Chen, and L.J. Wang, Electrochemistry of Hf(IV) in NaCl–KCl–NaF–K2HfF6 molten salts, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1644. doi: 10.1007/s12613-020-2083-3
      [6]
      C.T. Sun, Q. Xu, Y.P. Xiao, and Y.X. Yang, Electrochemical deposition of Nd and Nd–Fe alloy from Cu6Nd alloy in NaCl–KCl–NdCl3 melt, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1650. doi: 10.1007/s12613-020-2130-0
      [7]
      T.Q. Yin, L. Chen, Y. Xue, Y.H. Zheng, X.P. Wang, Y.D. Yan, M.L. Zhang, G.L. Wang, F. Gao, and M. Qiu, Electrochemical behavior and underpotential deposition of samarium on reactive electrodes (Al, Ni, Cu and Zn) in LiCl–KCl melt, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1657. doi: 10.1007/s12613-020-2112-2
      [8]
      S.Q. Jiao, H.D. Jiao, W.L. Song, M.Y. Wang, and J. G. Tu, A review on liquid metals as cathodes for molten salt/oxide electrolysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1588. doi: 10.1007/s12613-020-1971-x
      [9]
      M.J. Hu, M.Z. Yin, L.W. Hu, P.J. Liu, S. Wang, and J.B. Ge, High value utilization of CO2 to synthesize sulfur-doped carbon nanofibers with excellent capacitive performance, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1666. doi: 10.1007/s12613-020-2120-2
      [10]
      S.Y. Liu, Y.L. Zhen, X.B. He, L.J. Wang, and K.C. Chou, Recovery and separation of Fe and Mn from simulated chlorinated vanadium slag by molten salt electrolysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1678. doi: 10.1007/s12613-020-2140-y
      [11]
      X.L. Xi, M. Feng, L.W. Zhang, and Z.R. Nie, Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1599. doi: 10.1007/s12613-020-2175-0
      [12]
      D.H. Tian, Z.C. Han, M.Y. Wang, and S.Q. Jiao, Direct electrochemical N-doping to carbon paper in Molten LiCl–KCl–Li3N, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1687. doi: 10.1007/s12613-020-2026-z
      [13]
      Y.P. Dou, D.Y. Tang, H.Y. Yin, and D.H. Wang, Electrochemical preparation of the Fe–Ni36 Invar alloy from a mixed oxides precursor in molten carbonates, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1695. doi: 10.1007/s12613-020-2169-y
      [14]
      J. Zhou, D.D. Nie, X.B. Jin, and W. Xiao, Controllable nitridation of Ta2O5 in molten salts for enhanced photocatalysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1703. doi: 10.1007/s12613-020-2050-z
      [15]
      J.X. Wang, J.G. Tu, H.D. Jiao, and H.M. Zhu, Nanosheet-stacked flake graphite for high-performance Al storage in inorganic molten AlCl3–NaCl salt, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1711. doi: 10.1007/s12613-020-2080-6
      [16]
      X.H. Ning, C.Z. Liao, and G.Q. Li, Electrochemical properties of Ca–Pb electrode for calcium-based liquid metal batteries, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1723. doi: 10.1007/s12613-020-2150-9

    Catalog


    • /

      返回文章
      返回