留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 6
Jun.  2022

图(8)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1189
  • HTML全文浏览量:  447
  • PDF下载量:  96
  • 被引次数: 0
Mahmut Can Şenel, Yusuf Kanca,  and Mevlüt Gürbüz, Reciprocating sliding wear properties of sintered Al‒B4C composites, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1261-1269. https://doi.org/10.1007/s12613-020-2243-5
Cite this article as:
Mahmut Can Şenel, Yusuf Kanca,  and Mevlüt Gürbüz, Reciprocating sliding wear properties of sintered Al‒B4C composites, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1261-1269. https://doi.org/10.1007/s12613-020-2243-5
引用本文 PDF XML SpringerLink
研究论文

烧结 Al‒B4C 复合材料的往复滑动磨损性能

  • 通讯作者:

    Mevlüt Gürbüz    E-mail: mgurbuz@omu.edu.tr

  • 采用粉末冶金法制备了不同 B4C 含量(1wt%、6wt%、15wt% 和 30wt%)的碳化硼增强铝基复合材料(Al‒B4C),并研究了 B4C 含量对其力学性能和摩擦学行为的影响。在7 N载荷下, Al‒30B4C 复合材料的密度最高 (~2.54 g/cm3)、孔隙率最低 (4%)、维氏硬度最高 (HV ~75)、重量损失最低 (0.4 mg) 和比磨损率最低 (0.00042 mm3/ (N·m)),与纯铝相比,硬度提高167%,失重降低75.8%,比磨损率降低76.7%。此外,磨损表面的扫描电镜图像显示,Al‒B4C复合材料在7 N载荷下的最窄磨损槽为0.85 mm,主要磨损机制为磨粒磨损机制。根据摩擦分析,表面之间的摩擦系数随着碳化硼含量的增加和外加载荷的减少而增加。总之,就 Al‒B4C 复合材料的摩擦学和力学性能而言,B4C 是一种有效的增强材料。
  • Research Article

    Reciprocating sliding wear properties of sintered Al‒B4C composites

    + Author Affiliations
    • The fabrication of boron carbide reinforced aluminum matrix composites (Al‒B4C) with various contents of B4C (1wt%, 6wt%, 15wt%, and 30wt%) was performed by powder metallurgy, and the influence of the content of B4C on their mechanical and tribological behavior was examined. The Al‒30B4C composites recorded the highest density (~2.54 g/cm3), lowest porosity (4%), maximum Vickers hardness (HV ~75), lowest weight loss (0.4 mg), and lowest specific wear rate (0.00042 mm3/(N·m)) under a load of 7 N, with an enhancement of 167% in hardness, a decrease of 75.8% in weight loss, and a decrease of 76.7% in the specific wear rate compared with pure aluminum. In addition, the scanning electron microscope images of the worn surface revealed that the Al‒B4C composite has the narrowest wear groove of 0.85 mm at a load of 7 N, and the main wear mechanism was observed as an abrasive wear mechanism. According to the friction analysis, the coefficient of friction between surfaces increased with increasing boron carbide content and with decreasing applied load. In conclusion, B4C is an effective reinforcement material in terms of tribological and mechanical performance of the Al‒B4C composites.
    • loading
    • [1]
      T. Rajmohan and K. Palanikumar, Optimization of machining parameters for multi-performance characteristics in drilling hybrid metal matrix composites, J. Compos. Mater., 46(2012), No. 7, p. 869. doi: 10.1177/0021998311412635
      [2]
      A. Saboori, C. Novara, M. Pavese, C. Badini, F. Giorgis, and P. Fino, An investigation on the sinterability and the compaction behavior of aluminum/graphene nanoplatelets (GNPs) prepared by powder metallurgy, J. Mater. Eng. Perform., 26(2017), No. 3, p. 993. doi: 10.1007/s11665-017-2522-0
      [3]
      A. Alizadeh, E. Taheri-Nassaj and H.R. Baharvandi, Preparation and investigation of Al–4 wt % B4C nanocomposite powders using mechanical milling, Bull. Mater. Sci., 34(2011), No. 5, p. 1039. doi: 10.1007/s12034-011-0158-5
      [4]
      O.D. Neikow, S.S. Naboychenko, and G. Dawson, Handbook of Non-Ferrous Metal Powders – Technologies and Applications, 2nd ed., Elsevier, 2009.
      [5]
      B. Ramesh and T. Senthilvelan, Formability characteristics of aluminium based composites a review, Int. J. Eng. Technol., 2(2010), No. 1, p. 1. doi: 10.7763/IJET.2010.V2.91
      [6]
      G.S. Hanumanth and G.A. Irons, Particle incorporation by melt stirring for the production of metal-matrix composites, J. Mater. Sci., 28(1993), p. 2459. doi: 10.1007/BF01151680
      [7]
      Y. Sahin and S. Murphy, The effect of fibre orientation on the dry sliding wear of borsic-reinforced 2014 Al alloy, J. Mater. Sci., 31(1996), No. 20, p. 5399. doi: 10.1007/BF01159309
      [8]
      M. Kok, Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites, J. Mater. Process. Technol., 161(2005), No. 3, p. 381. doi: 10.1016/j.jmatprotec.2004.07.068
      [9]
      K.K. Chawla, Composite Materials, Springer, New York, 2006.
      [10]
      D.K. Koli, G. Agnihotri, and R. Purohit, Advanced aluminium matrix composites: the critical need of automotive and aerospace engineering fields, Mater. Today-Proc., 2(2015), No. 4-5, p. 3032. doi: 10.1016/j.matpr.2015.07.290
      [11]
      A.J. Macke, B.F. Schultz, and P.K. Rohatgi, Metal matrix composites offer the automotive industry an opportunity to reduce vehicle weight, improve performance, Adv. Mater. Processes, 170(2012), No. 3, p. 19.
      [12]
      J.K. Chen and I.S. Huang, Thermal properties of aluminum–graphite composites by powder metallurgy, Composites Part B, 44(2013), No. 1, p. 698. doi: 10.1016/j.compositesb.2012.01.083
      [13]
      T.M. Lillo, Enhancing ductility of Al6061+10 wt.% B4C through equal-channel angular extrusion processing, Mater. Sci. Eng. A, 410-411(2005), p. 443. doi: 10.1016/j.msea.2005.08.093
      [14]
      H.M. Hu, E.J. Lavernia, W.C. Harrigan, J. Kajuch, and S.R. Nutt, Microstructural investigation on B4C/Al-7093 composite, Mater. Sci. Eng. A, 297(2001), No. 1-2, p. 94. doi: 10.1016/S0921-5093(00)01254-5
      [15]
      V.M. Ravindranath, G.S. Shiva Shankar, S. Basavarajappa, and N.G. Siddesh Kumar, Dry sliding wear behavior of hybrid aluminum metal matrix composite reinforced with boron carbide and graphite particles, Mater. Today-Proc., 4(2017), No. 10, p. 11163. doi: 10.1016/j.matpr.2017.08.082
      [16]
      W. Xue, L.T. Jiang, B. Zhang, D. Jing, T. He, G.Q. Chen, Z.Y. Xiu, and G.H. Wu, Quantitative analysis of the effects of particle content and aging temperature on aging behavior in B4C/6061Al composites, Mater. Charact., 163(2020), art. No. 110305. doi: 10.1016/j.matchar.2020.110305
      [17]
      Z.L. Chao, T.T. Sun, L.T. Jiang, Z.S. Zhou, G.Q. Chen, Q.Z, and G.H. Wu, Ballistic behavior and microstructure evolution of B4C/AA2024 composites, Ceram. Int., 45(2019), No. 16, p. 20539. doi: 10.1016/j.ceramint.2019.07.033
      [18]
      Z.L. Chao, L.T. Jiang, G.Q. Chen, J. Qiao, Q. Z, Z.H. Yu, Y.F. Cao, and G.H. Wu, The microstructure and ballistic performance of B4C/AA2024 functionally graded composites with wide range B4C volume fraction, Composites Part B, 161(2019), p. 627. doi: 10.1016/j.compositesb.2018.12.147
      [19]
      N. Radhika, J. Sasikumar, J.L. Sylesh, and R. Kishore, Dry reciprocating wear and frictional behaviour of B4C reinforced functionally graded and homogenous aluminium matrix composites, J. Mater. Res. Technol., 9(2020), No. 2, p. 1578.
      [20]
      D. Patidar and R.S. Rana, Effect of B4C particle reinforcement on the various properties of aluminium matrix composites: a survey paper, Mater. Today-Proc., 4(2017), No. 2, p. 2981. doi: 10.1016/j.matpr.2017.02.180
      [21]
      N. Senthilkumar, T. Tamizharasan, and M. Anbarasan, Mechanical characterization and tribological behaviour of Al–Gr–B4C metal matrix composite prepared by stir casting technique, J. Adv. Eng. Res., 1(2014), No. 1, p. 48.
      [22]
      N. Yuvaraj, S. Aravindan, and Vipin, Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization, J. Mater. Res. Technol., 4(2015), No. 4, p. 398. doi: 10.1016/j.jmrt.2015.02.006
      [23]
      M.C. Şenel and M. Gurbuz, Investigation on mechanical properties and microstructure of B4C/graphene binary particles reinforced aluminum hybrid composites, Met. Mater. Int., 24(2021), p. 2438. doi: 10.1007/s12540-019-00592-w
      [24]
      C. Gode, Mechanical properties of hot pressed SiCp and B4Cp/Alumix 123 composites alloyed with minor Zr, Composites Part B, 54(2013), p. 34. doi: 10.1016/j.compositesb.2013.04.068
      [25]
      A. Canakci, Microstructure and abrasive wear behaviour of B4C particle reinforced 2014 Al matrix composites, J. Mater. Sci., 46(2011), No. 8, p. 2805. doi: 10.1007/s10853-010-5156-2
      [26]
      C.S. Ramesh, R. Keshavamurthy, and G.J. Naveen, Effect of extrusion ratio on wear behaviour of hot extruded Al6061–SiCp (Ni–P coated) composites, Wear, 271(2011), No. 9-10, p. 1868. doi: 10.1016/j.wear.2010.12.078
      [27]
      K.R. Suresh, H.B. Niranjan, P.M. Jebaraj, and M.P. Chowdiah, Tensile and wear properties of aluminum composites, Wear, 255(2003), No. 1-6, p. 638. doi: 10.1016/S0043-1648(03)00292-8
      [28]
      G.E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York, 1986.
      [29]
      M.C. Şenel and M. Gürbüz, Microstructure and wear behaviour of graphene-Si3N4 binary particle reinforced aluminium hybrid composites, Bull. Mater. Sci., 43(2020), No. 1, art. No. 148. doi: 10.1007/s12034-020-02124-4
      [30]
      V.R. Rajeev, D.K. Dwivedi, and S.C. Jain, Effect of experimental parameters on reciprocating wear behavior of Al-Si-SiCp composites under dry condition, Tribol. Online, 4(2009), No. 5, p. 115. doi: 10.2474/trol.4.115
      [31]
      M.C. Şenel, M. Gürbüz, and E. Koç, Mechanical and tribological behaviours of aluminium matrix composites reinforced by graphene nanoplatelets, Mater. Sci. Technol., 34(2018), No. 16, p. 1980. doi: 10.1080/02670836.2018.1501839
      [32]
      K. Halil, O. İsmail, D. Sibel, and Ç. Ramazan, Wear and mechanical properties of Al6061/SiC/B4C hybrid composites produced with powder metallurgy, J. Mater. Res. Technol., 8(2019), No. 6, p. 5348. doi: 10.1016/j.jmrt.2019.09.002
      [33]
      S. Jamale and B.V.M. Kumar, Sintering and sliding wear studies of B4C‒SiC composites, Int. J. Refract. Met. Hater Mater., 87(2020), art. No. 105124. doi: 10.1016/j.ijrmhm.2019.105124
      [34]
      G.Y. Deng, A.K. Tieu, X.D. Lan, L.H. Su, L. Wang, Q. Zhu, and H.T. Zhu, Effects of normal load and velocity on the dry sliding tribological behaviour of CoCrFeNiMo0.2 high entropy alloy, Tribol. Int., 144(2020), art. No. 106116. doi: 10.1016/j.triboint.2019.106116
      [35]
      Z. Wang, K. Georgarakis, W.W. Zhang, K.G. Prashanth, J. Eckert, and S. Scudino, Reciprocating sliding wear behavior of high-strength nanocrystalline Al84Ni7Gd6Co3 alloys, Wear, 382-383(2017), p. 78. doi: 10.1016/j.wear.2017.04.013
      [36]
      V.R. Rajeev, D.K. Dwivedi, and S.C. Jain, Dry reciprocating wear of Al–Si–SiCp composites: A statistical analysis, Tribol. Int., 43(2010), No. 8, p. 1532. doi: 10.1016/j.triboint.2010.02.014
      [37]
      Y.Q. Liu, Z. Han, and H.T. Cong, Effects of sliding velocity and normal load on the tribological behavior of a nanocrystalline Al based composite, Wear, 268(2010), No. 7-8, p. 976. doi: 10.1016/j.wear.2009.12.027
      [38]
      N.M. Kumar, S.S. Kumaran, and L.A. Kumaraswamidhas, Wear behaviour of Al 261 8 alloy reinforced with Si3N4, AlN and ZrB2 in situ composites at elevated temperatures, Alex. Eng. J., 55(2016), No. 1, p. 19.
      [39]
      H.G.P. Kumar and M.A. Xavior, Fatigue and wear behavior of Al6061–graphene composites synthesized by powder metallurgy, Trans. Indian Inst. Met., 69(2016), No. 2, p. 415. doi: 10.1007/s12666-015-0780-9

    Catalog


    • /

      返回文章
      返回