留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 6
Jun.  2022

图(11)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  1350
  • HTML全文浏览量:  503
  • PDF下载量:  90
  • 被引次数: 0
E. Safary, R. Taghiabadi,  and M.H. Ghoncheh, Mechanical properties of Al–15Mg2Si composites prepared under different solidification cooling rates, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1249-1260. https://doi.org/10.1007/s12613-020-2244-4
Cite this article as:
E. Safary, R. Taghiabadi,  and M.H. Ghoncheh, Mechanical properties of Al–15Mg2Si composites prepared under different solidification cooling rates, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1249-1260. https://doi.org/10.1007/s12613-020-2244-4
引用本文 PDF XML SpringerLink
研究论文

不同凝固冷却速率下制备的Al–15Mg2Si复合材料的力学性能

  • 通讯作者:

    R. Taghiabadi    E-mail: taghiabadi@ikiu.ac.ir

  • 本文研究了不同的冷却速率(2.7、5.5、17.1和57.5°C/s)对Al–15Mg2Si复合材料的凝固参数、显微组织和力学性能的影响。结果表明,高冷却速率使Mg2Si颗粒细化,形貌更加致密,微裂纹倾向降低。随着冷却速率从2.7℃/s增加到57.5℃/s,原始Mg2Si颗粒的平均半径和含量分别从20 µm和13.5%下降到约10 µm和7.3%。提高冷却速率还改善了微成分的分布,降低了晶粒尺寸和微孔的体积分数。力学性能的研究结果表明,将冷却速度从2.7℃/s提高到约57.5°C/s,硬度和质量指数分别提高了25%和245%。高冷却速率还将断裂机制从以脆性为主的模式改变为包含大面积凹陷区的高能韧性模式。
  • Research Article

    Mechanical properties of Al–15Mg2Si composites prepared under different solidification cooling rates

    + Author Affiliations
    • The effect of different cooling rates (2.7, 5.5, 17.1, and 57.5°C/s) on the solidification parameters, microstructure, and mechanical properties of Al−15Mg2Si composites was studied. The results showed that a high cooling rate refined the Mg2Si particles and changed their morphology to more compacted forms with less microcracking tendency. The average radius and fraction of primary Mg2Si particles decreased from 20 µm and 13.5% to about 10 µm and 7.3%, respectively, as the cooling rate increased from 2.7 to 57.5°C/s. Increasing the cooling rate also improved the distribution of microconstituents and decreased the grain size and volume fraction of micropores. The mechanical properties results revealed that augmenting the cooling rate from 2.7 to about 57.5°C/s increased the hardness and quality index by 25% and 245%, respectively. The high cooling rate also changed the fracture mechanism from a brittle-dominated mode to a high-energy ductile mode comprising extensive dimpled zones.
    • loading
    • [1]
      M.S. Jahromi, M. Emamy, and A. Akrami, Microstructural evaluation and tensile properties of Cd-added Al–15Mg2Si–3Cu composite, Adv. Mater. Process. Technol., 2(2016), No. 1, p. 73.
      [2]
      V. Srinivas and V. Singh, Development of in situ as cast Al–Mg2Si particulate composite: Microstructure refinement and modification studies, Trans. Indian Inst. Met., 65(2012), No. 6, p. 759. doi: 10.1007/s12666-012-0199-5
      [3]
      A. Moharrami, A. Razaghian, M. Paidar, M. Šlapáková, O.O. Ojo, and R. Taghiabadi, Enhancing the mechanical and tribological properties of Mg2Si-rich aluminum alloys by multi-pass friction stir processing, Mater. Chem. Phys., 250(2020), art. No. 123066. doi: 10.1016/j.matchemphys.2020.123066
      [4]
      Y.M. Li, T.Y. Ma, Y.Y. Ren, T.Y. Liu, and X. Zou, First-principles calculation on the structure stability, elastic properties and electronic structure of P-doped Mg2Si, Mater. Res. Express, 7(2020), No. 3, art. No. 036533. doi: 10.1088/2053-1591/ab7e4a
      [5]
      J.Q. Zhang, H.H. Ma, B. Zhao, Q. Wei, and Y.T. Yang, Electronic and elastic properties of the antifluorite structure Mg2Si under pressure, AIP Conf. Proc., 1971(2018), No. 1, art. No. 020018.
      [6]
      L. Chen, H.Y. Wang, K. Liu, C. Wang, D. Luo, and Q.C. Jiang, Growth of Mg2Si crystals shaped by {100} and {111} facets from Al–Mg–Si melts in the presence of calcium, CrystEngComm, 19(2017), No. 22, p. 3058. doi: 10.1039/C7CE00404D
      [7]
      K.Y. Wang, R.D. Zhao, F.F. Wu, X.F. Wu, M.H. Chen, J. Xiang, and S.H. Chen, Improving microstructure and mechanical properties of hypoeutectic Al–Mg2Si alloy by Gd addition, J. Alloys Compd., 813(2020), art. No. 152178. doi: 10.1016/j.jallcom.2019.152178
      [8]
      H. Ghandvar, M.H. Idris, T.A.A. Bakar, A. Nafari, and N. Ahmad, Microstructural characterization, solidification characteristics and tensile properties of Al–15%Mg2Si–x(Gd–Sb) in situ composite, J. Mater. Res. Technol., 9(2020), No. 3, p. 3272. doi: 10.1016/j.jmrt.2020.01.023
      [9]
      H.T. Li, G. Scamans, and Z.Y. Fan, Refinement of the microstructure of an Al–Mg2Si hypereutectic alloy by intensive melt shearing, Mater. Sci. Forum, 765(2013), p. 97. doi: 10.4028/www.scientific.net/MSF.765.97
      [10]
      M. Chegini, M.H. Shaeri, R. Taghiabadi, S. Chegini, and F. Djavanroodi, The correlation of microstructure and mechanical properties of in-situ Al–Mg2Si cast composite processed by equal channel angular pressing, Materials, 12(2019), No. 9, art. No. 1553. doi: 10.3390/ma12091553
      [11]
      M. Lotfpour, M. Emamy, S.H. Allameh, and B. Pourbahari, Effect of hot extrusion on microstructure and tensile properties of Ca modified Mg–Mg2Si composite, Procedia Mater. Sci., 11(2015), p. 38. doi: 10.1016/j.mspro.2015.11.053
      [12]
      A. Moharami and A. Razaghian, Corrosion behaviour of friction stir processed Al–Mg2Si composites, Mater. Sci. Technol., 36(2020), No. 18, p. 1922. doi: 10.1080/02670836.2020.1852515
      [13]
      A. Moharrami, A. Razaghian, M. Emamy, and R. Taghiabadi, Effect of tool pin profile on the microstructure and tribological properties of friction stir processed Al–20 wt% Mg2Si composite, J. Tribol., 141(2019), No. 12, art. No. 122202. doi: 10.1115/1.4044672
      [14]
      M. Sharifzadeh, M.H. Shaeri, R. Taghiabadi, F. Mozaffari, and M. Ebrahimi, Investigating the combination effect of warm extrusion and multi-directional forging on microstructure and mechanical properties of Al–Mg2Si composites, Arch. Civ. Mech. Eng., 20(2020), No. 2, art. No. 33. doi: 10.1007/s43452-020-00020-6
      [15]
      M. Ebrahimi, A. Zarei-Hanzaki, A.H. Shafieizad, M. Šlapáková, and P. Teymoory, High-temperature wear mechanisms of a severely plastic deformed Al/Mg2Si composite, J. Tribol., 141(2019), No. 3, art. No. 031604. doi: 10.1115/1.4041764
      [16]
      J.M. Hu, W.G. Zhang, D.F. Fu, J. Teng, and H. Zhang, Improvement of the mechanical properties of Al–Mg–Si alloys with nano-scale precipitates after repetitive continuous extrusion forming and T8 tempering, J. Mater. Res. Technol., 8(2019), No. 6, p. 5950. doi: 10.1016/j.jmrt.2019.09.070
      [17]
      N. Nasiri, M. Emamy, A. Malekan, and M.H. Norouzi, Microstructure and tensile properties of cast Al–15%Mg2Si composite: Effects of phosphorous addition and heat treatment, Mater. Sci. Eng. A, 556(2012), p. 446. doi: 10.1016/j.msea.2012.07.011
      [18]
      S. Farahany, H. Ghandvar, N.A. Nordin, A. Ourdjini, and M.H. Idris, Effect of primary and eutectic Mg2Si crystal modifications on the mechanical properties and sliding wear behaviour of an Al–20Mg2Si–2Cu–xBi composite, J. Mater. Sci. Technol., 32(2016), No. 11, p. 1083. doi: 10.1016/j.jmst.2016.01.014
      [19]
      J. Campbell and M. Tiryakioğlu, Review of effect of P and Sr on modification and porosity development in Al–Si alloys, Mater. Sci. Technol., 26(2010), No. 3, p. 262. doi: 10.1179/174328409X425227
      [20]
      L.S. Tian, Y.C. Guo, J.P. Li, F. Xia, M.X. Liang, and Y.P. Bai, Effects of solidification cooling rate on the microstructure and mechanical properties of a cast Al–Si–Cu–Mg–Ni piston alloy, Materials, 11(2018), No. 7, art. No. 1230. doi: 10.3390/ma11071230
      [21]
      L.Y. Zhang, Y.H. Jiang, Z. Ma, S.F. Shan, Y.Z. Jia, C.Z. Fan, and W.K. Wang, Effect of cooling rate on solidified microstructure and mechanical properties of aluminium-A356 alloy, J. Mater. Process. Technol., 207(2008), No. 1-3, p. 107. doi: 10.1016/j.jmatprotec.2007.12.059
      [22]
      V.A. Hosseini, S.G. Shabestari, and R. Gholizadeh, Study on the effect of cooling rate on the solidification parameters, microstructure, and mechanical properties of LM13 alloy using cooling curve thermal analysis technique, Mater. Des., 50(2013), p. 7. doi: 10.1016/j.matdes.2013.02.088
      [23]
      D.T. Wang, H.T. Zhang, C. Guo, H.L. Wu, and J.Z. Cui, Effect of cooling rate on growth and transformation of primary Mg2Si in Al–Mg2Si in situ composites, J. Mater. Res., 33(2018), No. 20, p. 3458. doi: 10.1557/jmr.2018.118
      [24]
      H.Y. Wang, H.C. Yu, C. Li, M. Zha, C. Wang, and Q.C. Jiang, Morphology evolution of primary Mg2Si in Al–20Mg2Si–0.1Ca alloys prepared with various solidification cooling rates, CrystEngComm, 19(2017), No. 12, p. 1680. doi: 10.1039/C7CE00028F
      [25]
      R. Hadian, M. Emamy, N. Varahram, and N. Nemati, The effect of Li on the tensile properties of cast Al–Mg2Si metal matrix composite, Mater. Sci. Eng. A, 490(2008), No. 1-2, p. 250. doi: 10.1016/j.msea.2008.01.039
      [26]
      S.P. Li, S.X. Zhao, M.X. Pan, D.Q. Zhao, X.C. Chen, O.M. Barabash, and R.I. Barabash, Solidification and structural characteristics of α(Al)–Mg2Si eutectic, Mater. Trans. JIM, 38(1997), No. 6, p. 553. doi: 10.2320/matertrans1989.38.553
      [27]
      D. Shimosaka, S. Kumai, F. Casarotto, and S. Watanabe, Effect of cooling rates during solidification of Al–5.5%Mg–2.3%Si–0.6%Mn and Al–13%Mg2Si pseudo-binary alloys on their secondary-particle morphology and tear toughness, Mater. Trans., 52(2011), No. 5, p. 920. doi: 10.2320/matertrans.L-MZ201125
      [28]
      ASTM International, ASTM E92-82: Standard Test Method for Vickers Hardness of Metallic Materials, ASTM International, West Conshohocken, 2003.
      [29]
      ASTM International, ASTM E112-12: Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, 2013.
      [30]
      R.P. Taylor, S.T. McClain, and J.T. Berry, Uncertainty analysis of metal-casting porosity measurements using Archimedes’ principle, Int. J. Cast Met. Res., 11(1999), No. 4, p. 247. doi: 10.1080/13640461.1999.11819281
      [31]
      Y. Kaygısız and N. Maraşlı, Microstructural, mechanical and electrical characterization of directionally solidified Al–Si–Mg eutectic alloy, J. Alloys Compd., 618(2015), p. 197. doi: 10.1016/j.jallcom.2014.08.056
      [32]
      J.T. Zhang, Y.G. Zhao, X.F. Xu, and X.B. Liu, Effect of ultrasonic on morphology of primary Mg2Si in in-situ Mg2Si/Al composite, Trans. Nonferrous Met. Soc. China, 23(2013), No. 10, p. 2852. doi: 10.1016/S1003-6326(13)62806-X
      [33]
      J. Santos, A.E.W. Jarfors, and A.K. Dahle, Formation of iron-rich intermetallic phases in Al–7Si–Mg: Influence of cooling rate and strontium modification, Metall. Mater. Trans. A, 50(2019), No. 9, p. 4148. doi: 10.1007/s11661-019-05343-5
      [34]
      M. Mahta, M. Emamy, X.J. Cao, and J. Campbell, Overview of β-Al5FeSi phase in Al–Si alloys, [in] L.V. Olivante, ed., Materials Science Research Trends, Nova Science Publishers, Inc., New York, 2008, p. 251.
      [35]
      E. Sjölander and S. Seifeddine, Optimization of solution treatment of cast Al–7Si–0.3Mg and Al–8Si–3Cu–0.5Mg alloys, Metall. Mater. Trans. A, 45(2014), No. 4, p. 1916. doi: 10.1007/s11661-013-2141-9
      [36]
      K.Y. Wen, W. Hu, and G. Gottstein, Intermetallic compounds in thixoformed aluminium alloy A356, Mater. Sci. Technol., 19(2003), No. 6, p. 762. doi: 10.1179/026708303225002839
      [37]
      L.A. Narayanan, F.H. Samuel, and J.E. Gruzleski, Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum alloy, Metall. Mater. Trans. A, 25(1994), No. 8, p. 1761. doi: 10.1007/BF02668540
      [38]
      G.F. Liang, Y. Ali, G.Q. You, and M.X. Zhang, Effect of cooling rate on grain refinement of cast aluminium alloys, Materialia, 3(2018), p. 113. doi: 10.1016/j.mtla.2018.08.008
      [39]
      D.M. Stefanescu, ASM Handbook, Vol. 15, Casting, ASM International, Materials Park, OH, 1988.
      [40]
      K.D. Carlson, Z.P. Lin, and C. Beckermann, Modeling the effect of finite-rate hydrogen diffusion on porosity formation in aluminum alloys, Metall. Mater. Trans. B, 38(2007), No. 4, p. 541. doi: 10.1007/s11663-006-9013-2
      [41]
      L. Yao, Experimental Investigation and Numerical Modeling of Microporosity Formation in Aluminum Alloy A356 [Dissertation], The University of British Columbia, Vancouver, 2011.
      [42]
      M.H. Ghoncheh, S.G. Shabestari, and M.H. Abbasi, Effect of cooling rate on the microstructure and solidification characteristics of Al2024 alloy using computer-aided thermal analysis technique, J. Therm. Anal. Calorim., 117(2014), No. 3, p. 1253. doi: 10.1007/s10973-014-3867-3
      [43]
      S.G. Shabestari, M.H. Ghoncheh, and H. Momeni, Evaluation of formation of intermetallic compounds in Al2024 alloy using thermal analysis technique, Thermochim. Acta, 589(2014), p. 174. doi: 10.1016/j.tca.2014.05.024
      [44]
      B. Toloui and A. Hellawell, Phase separation and undercooling in Al–Si eutectic alloy—The influence of freezing rate and temperature gradient, Acta Metall., 24(1976), No. 6, p. 565. doi: 10.1016/0001-6160(76)90102-4
      [45]
      H.A.H. Steen and A. Hellawell, The growth of eutectic silicon—Contributions to undercooling, Acta Metall., 23(1975), No. 4, p. 529. doi: 10.1016/0001-6160(75)90093-0
      [46]
      S.G. Shabestari, H. Saghafian, F. Sahihi, and M.H. Ghoncheh, Investigation on microstructure of Al–25 wt%Mg2Si composite produced by slope casting and semi-solid forming, Int. J. Cast Met. Res., 28(2015), No. 3, p. 158. doi: 10.1179/1743133614Y.0000000143
      [47]
      M. Tiryakioğlu, J. Campbell, and N.D. Alexopoulos, Quality indices for aluminum alloy castings: A critical review, Metall. Mater. Trans. B, 40(2009), No. 6, p. 802. doi: 10.1007/s11663-009-9304-5
      [48]
      H. Ghandvar, M.H. Idris, and N. Ahmad, Effect of hot extrusion on microstructural evolution and tensile properties of Al–15%Mg2Si–xGd in situ composites, J. Alloys Compd., 751(2018), p. 370. doi: 10.1016/j.jallcom.2018.04.131
      [49]
      M. Emamy, A.R. Emami, R. Khorshidi, and M.R. Ghorbani, The effect of Fe-rich intermetallics on the microstructure, hardness and tensile properties of Al–Mg2Si die-cast composite, Mater. Des., 46(2013), p. 881. doi: 10.1016/j.matdes.2012.11.041
      [50]
      N. Soltani, A. Bahrami, and M.I. Pech-Canul, The effect of Ti on mechanical properties of extruded in-situ Al–15 pct Mg2Si composite, Metall. Mater. Trans. A, 44(2013), No. 9, p. 4366. doi: 10.1007/s11661-013-1747-2
      [51]
      R. Khorshidi, A. Honarbakhsh Raouf, M. Emamy, and H.R. Jafari Nodooshan, The evolution of heat treatment on the tensile properties of Na-modified Al–Mg2Si in situ composite, Adv. Mater. Res., 311-313(2011), p. 283. doi: 10.4028/www.scientific.net/AMR.311-313.283
      [52]
      A. Li, X.P. Zhao, H.Y. Huang, Y. Ma, L. Gao, Y.J. Su, and P. Qian, Fine-tuning the ductile-brittle transition temperature of Mg2Si intermetallic compound via Al doping, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 507. doi: 10.1007/s12613-019-1758-0
      [53]
      M.A. El-Sayed, H. Hassanin, and K. Essa, Bifilm defects and porosity in Al cast alloys, Int. J. Adv. Manuf. Technol., 86(2016), No. 5-8, p. 1173. doi: 10.1007/s00170-015-8240-6
      [54]
      G.W. Mugica, D.O. Tovio, J.C. Cuyas, and A.C. González, Effect of porosity on the tensile properties of low ductility aluminum alloys, Mater. Res., 7(2004), No. 2, p. 221. doi: 10.1590/S1516-14392004000200002
      [55]
      S. Farahany, H. Ghandvar, N.A. Nordin, and A. Ourdjini, Microstructure characterization, mechanical, and tribological properties of slow-cooled Sb-treated Al–20Mg2Si–Cu in situ composites, J. Mater. Eng. Perform., 26(2017), No. 4, p. 1685. doi: 10.1007/s11665-017-2624-8
      [56]
      M.F. Hafiz and T. Kobayashi, A study on the microstructure–fracture behavior relations in Al–Si casting alloys, Scripta Metall. Mater., 30(1994), No. 4, p. 475. doi: 10.1016/0956-716X(94)90606-8
      [57]
      E. Lee and B. Mishra, Effect of cooling rate on the mechanical properties of AA365 aluminum alloy heat-treated under T4, T5, and T6 conditions, Int. J. Metalcast., 12(2018), No. 3, p. 449. doi: 10.1007/s40962-017-0195-y
      [58]
      Ø. Ryen, B. Holmedal, O. Nijs, E. Nes, E. Sjölander, and H.E. Ekström, Strengthening mechanisms in solid solution aluminum alloys, Metall. Mater. Trans. A, 37(2006), No. 6, p. 1999. doi: 10.1007/s11661-006-0142-7
      [59]
      A. Poznak, D. Freiberg, and P. Sanders, Automotive wrought aluminium alloys, [in] R.N. Lumley, ed., Fundamentals of Aluminium Metallurgy: Recent Advances, Woodhead Publishing, Duxford, 2018, p. 333.

    Catalog


    • /

      返回文章
      返回