Cite this article as:

Qiao-kun Du, Qing-xia Wu, Hong-xun Wang, Xiang-juan Meng, Ze-kai Ji, Shu Zhao, Wei-wei Zhu, Chuang Liu, Min Ling, and Cheng-du Liang, Carbon dot-modified silicon nanoparticles for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp.1603-1610. https://dx.doi.org/10.1007/s12613-020-2247-1
Qiao-kun Du, Qing-xia Wu, Hong-xun Wang, Xiang-juan Meng, Ze-kai Ji, Shu Zhao, Wei-wei Zhu, Chuang Liu, Min Ling, and Cheng-du Liang, Carbon dot-modified silicon nanoparticles for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp.1603-1610. https://dx.doi.org/10.1007/s12613-020-2247-1
引用本文 PDF XML SpringerLink

碳点修饰硅在锂离子电池中的应用研究

Carbon dot-modified silicon nanoparticles for lithium-ion batteries

Abstract: Silicon (Si) particles were functionalized using carbon dots (CDs) to enhance the interaction between the Si particles and the binders. First, CDs rich in polar groups were synthesized using a simple hydrothermal method. Then, CDs were loaded on the Si surface by impregnation to obtain the functionalized Si particles (Si/CDs). The phases and microstructures of the Si/CDs were observed using Fourier-transform infrared reflection, X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. Si/CDs were used as the active material of the anode for electrochemical performance experiments. The electrochemical performance of the Si/CD electrode was assessed using cyclic voltammetry, electrochemical impedance spectroscopy, and constant current charge and discharge experiment. The electrodes prepared with Si/CDs showed good mechanical structure stability and electrochemical performance. After 150 cycles at 0.2 C, the capacity retention rate of the Si/CD electrode was 64.0%, which is twice as much as that of pure Si electrode under the same test conditions.

 

/

返回文章
返回