留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 6
Jun.  2022

图(7)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1698
  • HTML全文浏览量:  440
  • PDF下载量:  82
  • 被引次数: 0
Wen Yu, Jianxin Zhou, Yajun Yin, Zhixin Tu, Xin Feng, Hai Nan, Junpin Lin,  and Xianfei Ding, Effects of heat treatments on microstructures of TiAl alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1225-1230. https://doi.org/10.1007/s12613-021-2252-z
Cite this article as:
Wen Yu, Jianxin Zhou, Yajun Yin, Zhixin Tu, Xin Feng, Hai Nan, Junpin Lin,  and Xianfei Ding, Effects of heat treatments on microstructures of TiAl alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1225-1230. https://doi.org/10.1007/s12613-021-2252-z
引用本文 PDF XML SpringerLink
研究论文

热处理对TiAl合金显微组织的影响

  • 通讯作者:

    周建新    E-mail: zhoujianxin@hust.edu.cn

    丁贤飞    E-mail: xianfeimail@gmail.com

文章亮点

  • (1) 系统地研究了单步热处理和两步热处理对TiAl合金显微组织的影响。
  • (2) 揭示了Al含量的微量变化对TiAl合金热处理及显微组织类型的影响。
  • (3) 总结了铸造TiAl合金仅通过热处理获取双态组织的条件。
  • 本研究的目的是探究热处理对γ-TiAl合金显微组织的影响。通过铸造方法制备了两根Ti–47Al–2Cr–2Nb(原子百分比)合金铸锭,并对它们进行了两种类型的热处理。通过光学显微镜和扫描电子显微镜对合金原始铸态以及热处理态的显微组织进行了详细表征,同时也对两根铸锭的化学成分进行了检测。研究结果表明,当在1270–1185°C温度范围内进行热处理时,具有46.36at%较低Al含量的铸锭只能获得片层组织,而具有47.01at%较高Al含量的铸锭既可获得近片层组织,也可获得双态组织。这表明,对Ti–47Al–2Cr–2Nb合金而言,Al含量的微量降低将对热处理后的显微组织类型产生影响。在铸态和热处理态的显微组织中均观察到少量的B2相。当在较高的温度进行热处理时(例如1260°C), B2相主要分布在晶界上。然而, 当在较低的温度进行热处理时(例如1185°C),B2相将同时在晶界和片层团内析出。另外,本文也就热处理对晶粒细化和其他显微组织参数的影响进行了分析讨论。
  • Research Article

    Effects of heat treatments on microstructures of TiAl alloys

    + Author Affiliations
    • This study aims to investigate the effects of heat treatments on the microstructure of γ-TiAl alloys. Two Ti–47Al–2Cr–2Nb alloy ingots were manufactured by casting method and then heat-treated in two types of heat treatments. Their microstructures were studied by both optical and scanning electron microscopies. The chemical compositions of two ingots were determined as well. The ingot with lower Al content only obtains lamellar structures while the one higher in Al content obtains nearly lamellar and duplex structures after heat treatment within 1270 to 1185°C. A small amount of B2 phase is found to be precipitated in both as-cast and heat-treated microstructures. They are distributed at grain boundaries when holding at a higher temperature, such as 1260°C. However, B2 phase is precipitated at grain boundaries and in colony interiors simultaneously after heat treatments happened at 1185°C. Furthermore, the effects of heat treatments on grain refinement and other microstructural parameters are discussed.
    • loading
    • [1]
      H. Clemens and S. Mayer, Intermetallic titanium aluminides in aerospace applications—Processing, microstructure and properties, Mater. High Temp., 33(2016), No. 4-5, p. 560. doi: 10.1080/09603409.2016.1163792
      [2]
      F. Appel, H. Clemens, and F.D. Fischer, Modeling concepts for intermetallic titanium aluminides, Prog. Mater. Sci., 81(2016), p. 55. doi: 10.1016/j.pmatsci.2016.01.001
      [3]
      D.M. Dimiduk, Gamma titanium aluminide alloys—An assessment within the competition of aerospace structural materials, Mater. Sci. Eng. A, 263(1999), No. 2, p. 281. doi: 10.1016/S0921-5093(98)01158-7
      [4]
      Y.W. Kim, Intermetallic alloys based on gamma titanium aluminide, JOM, 41(1989), No. 7, p. 24. doi: 10.1007/BF03220267
      [5]
      Y.W. Kim and S.L. Kim, Advances in gammalloy materials–processes–application technology: Successes, dilemmas, and future, JOM, 70(2018), No. 4, p. 553. doi: 10.1007/s11837-018-2747-x
      [6]
      B.P. Bewlay, S. Nag, A. Suzuki, and M.J. Weimer, TiAl alloys in commercial aircraft engines, Mater. High Temp., 33(2016), No. 4-5, p. 549. doi: 10.1080/09603409.2016.1183068
      [7]
      J.K. Kim, J.H. Kim, J.Y. Kim, S.H. Park, S.W. Kim, M.H. Oh, and S.E. Kim, Producing fine fully lamellar microstructure for cast γ-TiAl without hot working, Intermetallics, 120(2020), art. No. 106728. doi: 10.1016/j.intermet.2020.106728
      [8]
      J. Aguilar, A. Schievenbusch, and O. Kättlitz, Investment casting technology for production of TiAl low pressure turbine blades—Process engineering and parameter analysis, Intermetallics, 19(2011), No. 6, p. 757. doi: 10.1016/j.intermet.2010.11.014
      [9]
      T.J. Kelly, C.M. Austin, and R.E. Allen, Processing of Gamma Titanium–Aluminide alloy Using a Heat Treatment Prior to Deformation Processing, U.S. Patent, Appl. 08/376519, 1997.
      [10]
      T.J. Kelly, B.P. Bewlay, M.J. Weimer, and R.K. Whitacre, Methods for Processing Titanium Aluminide Intermetallic Compositions, European Patent, Appl. 13159885.6, 2013.
      [11]
      T.J. Kelly, M.J. Weimer, C.M. Austin, B. London, D.E. Larson, and D.A. Wheeler, Heat Treatment of Gamma Titanium Aluminide Alloys, U.S. Patent, Appl. 08/262168, 2001.
      [12]
      M. Guillaume, M.C. Jeanne, and M.P. Marie, Heat Treatment of an Alloy Based on Titanium Aluminide, U.S. Patent, Appl. 15/302418, 2015.
      [13]
      T.S. Harding and J.W. Jones, Fatigue thresholds of cracks resulting from impact damage to γ-TiAl, Scripta Mater., 43(2000), No. 7, p. 623. doi: 10.1016/S1359-6462(00)00470-X
      [14]
      C. Mercer, J. Lou, and W.O. Soboyejo, An investigation of fatigue crack growth in a cast lamellar Ti–48Al–2Cr–2Nb alloy, Mater. Sci. Eng. A, 284(2000), No. 1-2, p. 235. doi: 10.1016/S0921-5093(00)00702-4
      [15]
      S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, and C. Badini, Electron beam melting of Ti–48Al–2Cr–2Nb alloy: Microstructure and mechanical properties investigation, Intermetallics, 19(2011), No. 6, p. 776. doi: 10.1016/j.intermet.2010.11.017
      [16]
      Y. Mine, K. Takashima, and P. Bowen, Effect of lamellar spacing on fatigue crack growth behaviour of a TiAl-based aluminide with lamellar microstructure, Mater. Sci. Eng. A, 532(2012), p. 13. doi: 10.1016/j.msea.2011.10.055
      [17]
      H.L. Zhu, D.Y. Seo, K. Maruyama, and P. Au, Effect of lamellar spacing on microstructural instability and creep behavior of a lamellar TiAl alloy, Scripta Mater., 54(2006), No. 12, p. 1979. doi: 10.1016/j.scriptamat.2006.03.023
      [18]
      Z.T. Gao, J.R. Yang, Y.L. Wu, R. Hu, S.L. Kim, and Y.W. Kim, A newly generated nearly lamellar microstructure in cast Ti–48Al–2Nb–2Cr alloy for high-temperature strengthening, Metall. Mater. Trans. A, 50(2019), No. 12, p. 5839. doi: 10.1007/s11661-019-05491-8
      [19]
      M. Ahmadi, S.R. Hosseini, and S.M.M. Hadavi, Effects of heat treatment on microstructural modification of as-cast gamma-TiAl alloy, J. Mater. Eng. Perform., 25(2016), No. 6, p. 2138. doi: 10.1007/s11665-016-2067-7
      [20]
      Y.J. Du, J. Shen, Y.L. Xiong, Z. Shang, and H.Z. Fu, Stability of lamellar microstructures in a Ti–48Al–2Nb–2Cr alloy during heat treatment and its application to lamellae alignment as a quasi-seed, Intermetallics, 61(2015), p. 80. doi: 10.1016/j.intermet.2015.02.018
      [21]
      A. Szkliniarz, Grain refinement of Ti–48Al–2Cr–2Nb alloy by heat treatment method, Solid State Phenom., 191(2012), p. 221. doi: 10.4028/www.scientific.net/SSP.191.221
      [22]
      A. Kościelna and W. Szkliniarz, Effect of cyclic heat treatment parameters on the grain refinement of Ti–48Al–2Cr–2Nb alloy, Mater. Charact., 60(2009), No. 10, p. 1158. doi: 10.1016/j.matchar.2009.03.008
      [23]
      T. Novoselova, S. Malinov, and W. Sha, Experimental study of the effects of heat treatment on microstructure and grain size of a gamma TiAl alloy, Intermetallics, 11(2003), No. 5, p. 491. doi: 10.1016/S0966-9795(03)00028-1
      [24]
      J.N. Wang, J. Yang, and Y. Wang, Grain refinement of a Ti–47Al–8Nb–2Cr alloy through heat treatments, Scripta Mater., 52(2005), No. 4, p. 329. doi: 10.1016/j.scriptamat.2004.10.004
      [25]
      W.J. Zhang, G.L. Chen, and E. Evangelista, Formation of α phase in the massive and feathery γ-TiAl alloys during aging in the single α field, Metall. Mater. Trans. A, 30(1999), No. 10, p. 2591. doi: 10.1007/s11661-999-0298-z
      [26]
      H.P. Tang, G.Y. Yang, W.P. Jia, W.W. He, S.L. Lu, and M. Qian, Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting, Mater. Sci. Eng. A, 636(2015), p. 103. doi: 10.1016/j.msea.2015.03.079
      [27]
      J.C. Schuster and M. Palm, Reassessment of the binary Aluminum–Titanium phase diagram, J. Phase Equilib. Diffus., 27(2006), No. 3, p. 255. doi: 10.1361/154770306X109809
      [28]
      P. Han, H.C. Kou, J.R. Yang, G. Yang, and J.S. Li, Solidification microstructure characteristics of Ti–44Al–4Nb–2Cr–0.1B alloy under various cooling rates during mushy zone, Rare Met., 35(2016), No. 1, p. 35. doi: 10.1007/s12598-015-0633-z
      [29]
      Y. Liu, R. Hu, H.C. Kou, J. Wang, T.B. Zhang, J.S. Li, and J. Zhang, Solidification characteristics of high Nb-containing γ-TiAl-based alloys with different aluminum contents, Rare Met., 34(2015), No. 6, p. 381. doi: 10.1007/s12598-014-0416-y
      [30]
      Y. Liu, R. Hu, G. Yang, H.C. Kou, T.B. Zhang, J. Wang, and J.S. Li, Widmannstätten laths in Ti48Al2Cr2Nb alloy by undercooled solidification, Mater. Charact., 107(2015), p. 156. doi: 10.1016/j.matchar.2015.07.006
      [31]
      S.C. Huang and E.L. Hall, The effects of Cr additions to binary TiAl-base alloys, Metall. Trans. A, 22(1991), No. 11, p. 2619. doi: 10.1007/BF02851355
      [32]
      Y.W. Kim, Microstructural evolution and mechanical properties of a forged gamma titanium aluminide alloy, Acta Metall. Mater., 40(1992), No. 6, p. 1121. doi: 10.1016/0956-7151(92)90411-7

    Catalog


    • /

      返回文章
      返回