留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 6
Jun.  2022

图(8)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  1586
  • HTML全文浏览量:  405
  • PDF下载量:  111
  • 被引次数: 0
Zhengde Pang, Yuyang Jiang, Jiawei Ling, Xuewei Lü,  and Zhiming Yan, Blast furnace ironmaking process with super high TiO2 in the slag: Density and surface tension of the slag, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1170-1178. https://doi.org/10.1007/s12613-021-2262-x
Cite this article as:
Zhengde Pang, Yuyang Jiang, Jiawei Ling, Xuewei Lü,  and Zhiming Yan, Blast furnace ironmaking process with super high TiO2 in the slag: Density and surface tension of the slag, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1170-1178. https://doi.org/10.1007/s12613-021-2262-x
引用本文 PDF XML SpringerLink
研究论文

高炉炼铁工艺中超高TiO2炉渣:密度和表面张力

  • 通讯作者:

    吕学伟    E-mail: lvxuewei@cqu.edu.cn

    严志明    E-mail: zhiming.yan@warwick.ac.uk

文章亮点

  • (1) 系统地研究了TiO2含量和MgO/CaO质量比对高钛型炉渣密度和表面张力的影响规律。
  • (2) 基于炉渣结构聚合度阐明了炉渣宏观性质与其微观结构特征之间的联系。
  • (3) 总结炉渣表面张力理论预测模型并获得含钛高炉渣等表面张力图。
  • 针对高炉冶炼超高(>80%)甚至全钒钛磁铁矿工艺流程,为了优化高炉造渣制度,进行了一系列关于高钛型炉渣(BFS)物理化学性质方面的研究。本工作分别利用阿基米德原理和最大气泡压力法研究了高钛型炉渣的密度和表面张力。系统探究了TiO2含量和MgO/CaO质量比对CaO–SiO2–TiO2–MgO–Al2O3炉渣密度和表面张力的影响规律。结果发现,随着TiO2含量从20wt%增加到30wt%,炉渣密度逐渐降低,但随着MgO/CaO质量比从0.32增加到0.73,熔渣密度略有增加。从硅酸盐网络结构角度来看,炉渣密度与结构聚合度(DOP)具有一致的变化规律。TiO2的加入会降低炉渣体系中(Q3)2/(Q2)比值(其中,Q2Q3分别代表桥氧数为2和3的网络结构单元),进而降低炉渣结构聚合度,导致炉渣密度降低。随着TiO2含量从20wt%增加到30wt%,CaO–SiO2–TiO2–MgO–Al2O3炉渣的表面张力显著降低。相反,随着MgO/CaO质量比从0.32增加到0.73,表面张力增加。此外,利用基于Butler公式的Tanaka模型获得了1723 K下含钛炉渣等表面张力图,为高炉冶炼超高比例(>80%)甚至全钒钛磁铁矿工艺中造渣制度的优化提供了数据支撑。
  • Research Article

    Blast furnace ironmaking process with super high TiO2 in the slag: Density and surface tension of the slag

    + Author Affiliations
    • Aiming at the process of smelting ultra-high (>80%) or even full vanadium titanomagnetite in blast furnace, we are conducting a series of works on physics character of high TiO2 bearing blast furnace slag (BFS) for slag optimization. This work discussed the density and surface tension of high TiO2 bearing BFS using the Archimedean principle and the maximum bubble pressure method, respectively. The influence of TiO2 content and the MgO/CaO mass ratio on the density and surface tension of CaO–SiO2–TiO2–MgO–Al2O3 slags were investigated. Results indicated that the density of slags decreased with the TiO2 content increasing from 20wt% to 30wt%, but it increased slightly with the MgO/CaO mass ratio increasing from 0.32 to 0.73. In view of silicate network structure, the density and the degree of polymerization (DOP) of network structure have a consistent trend. The addition of TiO2 reduced (Q3)2/(Q2) ratio (Q2 and Q3 represent structural unit with bridge oxygen number of 2 and 3, respectively) and then decreased DOP, which led to the decrease of slag density. The surface tension of CaO–SiO2–TiO2–MgO–Al2O3 slags decreased dramatically with the TiO2 content increasing from 20wt% to 30wt%. Conversely, it increased with the MgO/CaO mass ratio increasing from 0.32 to 0.73. Furthermore, the iso-surface tension lines were obtained under 1723 K using the Tanaka developed model in view of Butler formula. It may be useful for slag optimization of ultra-high proportion (>80%) or even full vanadium titanomagnetite under BF smelting.
    • loading
    • [1]
      M. Hino, T. Nagasaka, A. Katsumata, K.I. Higuchi, K. Yamaguchi, and N. Kon-No, Simulation of primary-slag melting behavior in the cohesive zone of a blast furnace, considering the effect of Al2O3, FetO, and basicity in the sinter ore, Metall. Mater. Trans. B, 30(1999), No. 4, p. 671. doi: 10.1007/s11663-999-0028-3
      [2]
      N. Siddiqi, B. Bhoi, R.K. Paramguru, V. Sahajwalla, and O. Ostrovski, Slag-graphite wettability and reaction kinetics Part 1. Kinetics and mechanism of molten FeO reduction reaction, Ironmaking Steelmaking, 27(2000), No. 5, p. 367. doi: 10.1179/030192300677679
      [3]
      M. Wegener, L. Muhmood, S. Sun, and A.V. Deev, Surface tension measurements of calcia−alumina slags: A comparison of dynamic methods, Metall. Mater. Trans. B, 46(2015), No. 1, p. 316. doi: 10.1007/s11663-014-0174-0
      [4]
      K. Ito and R.J. Fruehan, Study on the foaming of CaO−SiO2−FeO slags: Part I. Foaming parameters and experimental results, Metall. Trans. B, 20(1989), No. 4, p. 509. doi: 10.1007/BF02654600
      [5]
      K. Ito and R.J. Fruehan, Study on the foaming of CaO−SiO2−FeO slags: Part II. Dimensional analysis and foaming in iron and steelmaking processes, Metall. Trans. B, 20(1989), No. 4, p. 515. doi: 10.1007/BF02654601
      [6]
      H.L. George, R.J. Longbottom, S.J. Chew, and B.J. Monaghan, Flow of molten slag through a coke packed bed, ISIJ Int., 54(2014), No. 4, p. 820. doi: 10.2355/isijinternational.54.820
      [7]
      D.D. Geleta, M.I.H. Siddiqui, and J. Lee, Characterization of slag flow in fixed packed bed of coke particles, Metall. Mater. Trans. B, 51(2020), No. 1, p. 102. doi: 10.1007/s11663-019-01750-6
      [8]
      L. Zhang, L.N. Zhang, M.Y. Wang, G.Q. Li, and Z.T. Sui, Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition, Miner. Eng., 20(2007), No. 7, p. 684. doi: 10.1016/j.mineng.2007.01.003
      [9]
      D.S. Chen, B. Song, L.N. Wang, T. Qi, Y. Wang, and W.J. Wang, Solid state reduction of Panzhihua titanomagnetite concentrates with pulverized coal, Miner. Eng., 24(2011), No. 8, p. 864. doi: 10.1016/j.mineng.2011.03.018
      [10]
      F. Valighazvini, F. Rashchi, and R. Khayyam Nekouei, Recovery of titanium from blast furnace slag, Ind. Eng. Chem. Res., 52(2013), No. 4, p. 1723. doi: 10.1021/ie301837m
      [11]
      P. Liu, L.B. Zhang, B.G. Liu, G.J. He, J.H. Peng, and M.Y. Huang, Determination of dielectric properties of titanium carbide fabricated by microwave synthesis with Ti-bearing blast furnace slag, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 88. doi: 10.1007/s12613-020-1985-4
      [12]
      L.Z. Gao, T.X. Ma, M.J. Hu, Z.M. Yan, X.W. Lü, and M.L. Hu, Effect of titanium content on the precipitation behavior of carbon-saturated molten pig iron, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 483. doi: 10.1007/s12613-019-1755-3
      [13]
      J.Y. Xiang, Q.Y. Huang, X. Lv, and C.G. Bai, Effect of mechanical activation treatment on the recovery of vanadium from converter slag, Metall. Mater. Trans. B, 48(2017), No. 5, p. 2759. doi: 10.1007/s11663-017-1033-6
      [14]
      G.Q. Ma and M. Cheng, Technological study of titanium slag production from titanium-bearing blast furnace slag, Adv. Mater. Res., 962-965(2014), p. 793. doi: 10.4028/www.scientific.net/AMR.962-965.793
      [15]
      T.Q. Jiang, H.G. Dong, Y.F. Guo, G.H. Li, and Y.B. Yang, Study on leaching Ti from Ti bearing blast furnace slag by sulphuric acid, Miner. Process. Extr. Metall., 119(2010), No. 1, p. 33. doi: 10.1179/037195509X12585446038807
      [16]
      Z.D. Pang, X.W. Lv, J.W. Ling, Y.Y. Jiang, Z.M. Yan, and J. Dang, Blast furnace ironmaking process with super high TiO2 in the slag: High-temperature structure of the slag, Metall. Mater. Trans. B, 51(2020), No. 5, p. 2348. doi: 10.1007/s11663-020-01929-2
      [17]
      Z.M. Yan, X.W. Lv, Z.D. Pang, X.M. Lv, and C.G. Bai, Transition of blast furnace slag from silicate based to aluminate based: Density and surface tension, Metall. Mater. Trans. B, 49(2018), No. 3, p. 1322. doi: 10.1007/s11663-018-1242-7
      [18]
      Y.H. Liu, X.W. Lv, C.G. Bai, and B. Yu, Surface tension of the molten blast furnace slag bearing TiO2: Measurement and evaluation, ISIJ Int., 54(2014), No. 10, p. 2154. doi: 10.2355/isijinternational.54.2154
      [19]
      V.B. Fainerman, R. Miller, and P. Joos, The measurement of dynamic surface tension by the maximum bubble pressure method, Colloid Polym. Sci., 272(1994), No. 6, p. 731. doi: 10.1007/BF00659287
      [20]
      N. Ono, T. Kaneko, S. Nishiguchi, and M. Shoji, Measurement of temperature dependence of surface tension of alcohol aqueous solutions by maximum bubble pressure method, J. Therm. Sci. Technol., 4(2009), No. 2, p. 284. doi: 10.1299/jtst.4.284
      [21]
      H.A. Friedrichs, L.W. Ronkow, P. Vermot, and S.A. Bliznjukow, New method for simultaneous measurement of viscosity, density and surface tension of metallic melts at high temperatures, Steel Res., 66(1995), No. 12, p. 509. doi: 10.1002/srin.199501163
      [22]
      G. Liu, J.M. Toguri, and N.M. Stubina, Surface tension and density of the molten LaCl3–NaCl binary system, Can. J. Chem., 65(1987), No. 12, p. 2779. doi: 10.1139/v87-462
      [23]
      T. Fujisawa, T. Utigard, and J.M. Toguri, Surface tension and density of the molten PbCl2–KCl–NaCl ternary system, Can. J. Chem., 63(1985), No. 5, p. 1132. doi: 10.1139/v85-192
      [24]
      A. Pamies, C. Garcia Cordovilla, and E. Louis, The measurement of surface tension of liquid aluminium by means of the maximum bubble pressure method: The effect of surface oxidation, Scripta Metall., 18(1984), No. 9, p. 869. doi: 10.1016/0036-9748(84)90251-5
      [25]
      O. Takeda, H. Iwamoto, R. Sakashita, C. Iseki, and H.M. Zhu, Development of maximum bubble pressure method for surface tension measurement of high viscosity molten silicate, Int. J. Thermophys., 38(2017), No. 7, art. No. 109.
      [26]
      F.A. Oliveira, A. Miller, and J. Madías, Surface tension, densities and viscosities of some CaO−Al2O3 slags, Rev. Metal., 35(1999), No. 2, p. 91. doi: 10.3989/revmetalm.1999.v35.i2.611
      [27]
      P. Vadász, M. Havlík, and V. Danêk, Density and surface tension of calcium–ferritic slags I. The systems Cao–FeO–Fe2O3–SiO2 and CaO–FeO–Fe2O3–Al2O3, Can. Metall. Q., 39(2000), No. 2, p. 143. doi: 10.1179/cmq.2000.39.2.143
      [28]
      K.C. Mills, Slag Atlas, 2nd ed., Verlag Stahleisen, Germany, 1995.
      [29]
      S. Sukenaga, S. Haruki, Y. Nomoto, N. Saito, and K. Nakashima, Density and surface tension of CaO–SiO2–Al2O3–R2O (R=Li, Na, K) melts, ISIJ Int., 51(2011), No. 8, p. 1285. doi: 10.2355/isijinternational.51.1285
      [30]
      A.I. Bochorishvili and S.B. Yakobashvili, Effect of metal oxide on the surface tension of lime–alumina slags, Svar. Proiz., 10(1968), No. 1, p. 13.
      [31]
      S. Sukenaga, T. Higo, H. Shibata, N. Saito, and K. Nakashima, Effect of CaO/SiO2 ratio on surface tension of CaO–SiO2–Al2O3–MgO melts, ISIJ Int., 55(2015), No. 6, p. 1299. doi: 10.2355/isijinternational.55.1299
      [32]
      W.D. Kingery, Surface tension of some liquid oxides and their temperature coefficients, J. Am. Ceram. Soc., 42(1959), No. 1, p. 6. doi: 10.1111/j.1151-2916.1959.tb09134.x
      [33]
      J.A.V. Butler, The thermodynamics of the surfaces of solutions, Proc. R. Soc. London A, 135(1932), No. 827, p. 348. doi: 10.1098/rspa.1932.0040
      [34]
      B.O. Mysen, F.J Ryerson, and D. Virgo, The influence of TiO2 on the structure and derivative properties of silicate melts, Am Miner., 65(1980), No. 11-1, p. 1150.
      [35]
      B.O. Mysen, D. Virgo, C.M. Scarfe, and D.J. Cronin, Relations between the anionic structure and viscosity of silicate melts; a Raman spectroscopic study, Am. Mineral., 65(1980), No. 7-8, p. 690.
      [36]
      B.O. Mysen, D. Virgo, and I. Kushiro, The structural role of aluminium in silicate melts—A Raman spectroscopic study at 1 atmosphere, Am. Mineral., 66(1981), No. 7, p. 678.
      [37]
      B.O. Mysen, D. Virgo, and F.A. Seifert, The structure of silicate melts: Implications for chemical and physical properties of natural magma, Rev. Geophys. Space Phys., 20(1982), No. 3, p. 353. doi: 10.1029/RG020i003p00353
      [38]
      B.O. Mysen, L.W. Finger, D. Virgo, and F.A. Seifert, Curve-fitting of Raman spectra of silicate glasses, Am. Mineral., 67(1982), No. 7, p. 686.
      [39]
      K.C. Mills, M. Hayashi, L.J. Wang, and T. Watanabe, The structure and properties of silicate slags, [in] Treatise on Process Metallurgy, Elsevier, Amsterdam, 2014, p. 149.
      [40]
      K.C. Mills, The estimation of slag properties, [in] Southern African Pyrometallurgy 2011 International Conference, Southern African, 2011.
      [41]
      K.C. Mills, L. Yuan, and R.T. Jones, Estimating the physical properties of slags, J. South Afr. Inst. Min. Metall., 111(2011), p. 649.
      [42]
      T. Tanaka, K. Hack, T. Iida, and S. Hara, Application of thermodynamic databases to the evaluation of surface tensions of molten alloys, salt mixtures and oxide mixtures, Int. J. Mater. Res., 87(1996), No. 5, p. 380. doi: 10.1515/ijmr-1996-870509
      [43]
      T. Tanaka, T. Kitamura, and I.A. Back, Evaluation of surface tension of molten ionic mixtures, ISIJ Int., 46(2006), No. 3, p. 400. doi: 10.2355/isijinternational.46.400
      [44]
      M. Nakamoto, A. Kiyose, T. Tanaka, L. Holappa, and M. Hämäläinen, Evaluation of the surface tension of ternary silicate melts containing Al2O3, CaO, FeO, MgO or MnO, ISIJ Int., 47(2007), No. 1, p. 38. doi: 10.2355/isijinternational.47.38
      [45]
      M. Nakamoto, M. Hanao, T. Tanaka, M. Kawamoto, L. Holappa, and M. Hämäläinen, Estimation of surface tension of molten silicates using neural network computation, ISIJ Int., 47(2007), No. 8, p. 1075. doi: 10.2355/isijinternational.47.1075
      [46]
      M. Hanao, T. Tanaka, M. Kawamoto, and K. Takatani, Evaluation of surface tension of molten slag in multi-component systems, ISIJ Int., 47(2007), No. 7, p. 935. doi: 10.2355/isijinternational.47.935
      [47]
      R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A, 32(1976), No. 5, p. 751. doi: 10.1107/S0567739476001551
      [48]
      I. Sohn and D.J. Min, A review of the relationship between viscosity and the structure of calcium-silicate-based slags in ironmaking, Steel Res. Int., 83(2012), No. 7, p. 611. doi: 10.1002/srin.201200040
      [49]
      R. Knoche, D.B. Dingwell, and S.L. Webb, Melt densities for leucogranites and granitic pegmatites: Partial molar volumes for SiO2, Al2O3, Na2O, K2O, Li2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, B2O3, P2O5, F2O−1, TiO2, Nb2O5, Ta2O5, and WO3, Geochim. Cosmochim. Acta, 59(1995), No. 22, p. 4645. doi: 10.1016/0016-7037(95)00328-2

    Catalog


    • /

      返回文章
      返回