留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 8
Aug.  2022

图(14)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  984
  • HTML全文浏览量:  316
  • PDF下载量:  14
  • 被引次数: 0
R. Jafariand B. Eghbali, Intermetallic growth behavior during post deformation annealing in multilayer Ti/Al/Nb composite interfaces, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1608-1617. https://doi.org/10.1007/s12613-021-2263-9
Cite this article as:
R. Jafariand B. Eghbali, Intermetallic growth behavior during post deformation annealing in multilayer Ti/Al/Nb composite interfaces, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1608-1617. https://doi.org/10.1007/s12613-021-2263-9
引用本文 PDF XML SpringerLink
研究论文

多层 Ti/Al/Nb 复合界面变形后退火过程中金属间化合物的生长行为

  • 通讯作者:

    B. Eghbali    E-mail: eghbali@sut.ac.ir

  • 三金属Ti–Al–Nb复合材料通过三个程序进行加工:热压、轧制和热压,然后进行后续轧制。 然后将制造的复合材料在 600、625 和 650°C 的温度下退火不同时间。 界面处的显微组织观察表明,塑性变形应变的增加显着影响了 TiAl3金属间化合物层的演化并加速了层的生长。相反,施加的应变量不会显着影响 NbAl3 金属间化合物层厚度的演变。还发现Al和Ti原子在整个TiAl3层中发生了扩散,但只有Al原子在NbAl3层中扩散。 NbAl3 金属间化合物层生长缓慢是由于 Nb 原子缺乏扩散和 Al 原子与 Nb 原子反应的高活化能所致。
  • Research Article

    Intermetallic growth behavior during post deformation annealing in multilayer Ti/Al/Nb composite interfaces

    + Author Affiliations
    • The tri-metal Ti–Al–Nb composites were processed through three procedures: hot pressing, rolling, and hot pressing, followed by subsequent rolling. The fabricated composites were then subjected to annealing at 600, 625, and 650°C temperatures at different times. Microstructure observation at the interfaces reveals that the increase in plastic deformation strain significantly affects TiAl3 intermetallic layers’ evolution and accelerates the layers’ growth. On the contrary, the amount of applied strain does not significantly affect the evolution of the NbAl3 intermetallic layer thickness. It was also found that Al and Ti atoms’ diffusion has occurred throughout the TiAl3 layer, but only Al atoms diffuse through the NbAl3 layer. The slow growth rate of the NbAl3 intermetallic layer is due to the lack of diffusion of Nb atoms and the high activation energy of Al atoms’ reaction with Nb atoms.
    • loading
    • [1]
      A. Patselov, B. Greenberg, S. Gladkovskii, R. Lavrikov, and E. Borodin, Layered metal-intermetallic composites in Ti–Al system: Strength under static and dynamic load, AASRI Procedia, 3(2012), p. 107. doi: 10.1016/j.aasri.2012.11.019
      [2]
      M.S. Abd-Elwahed and A.F. Meselhy, Experimental investigation on the mechanical, structural and thermal properties of Cu–ZrO2 nanocomposites hybridized by graphene nanoplatelets, Ceram. Int., 46(2020), No. 7, p. 9198. doi: 10.1016/j.ceramint.2019.12.172
      [3]
      A.I. Khdair and A. Fathy, Enhanced strength and ductility of Al–SiC nanocomposites synthesized by accumulative roll bonding, J. Mater. Res. Technol., 9(2020), No. 1, p. 478. doi: 10.1016/j.jmrt.2019.10.077
      [4]
      J.G. Luo and V.L. Acoff, Processing gamma-based TiAl sheet materials by cyclic cold roll bonding and annealing of elemental titanium and aluminum foils, Mater. Sci. Eng. A, 433(2006), No. 1-2, p. 334. doi: 10.1016/j.msea.2006.06.120
      [5]
      X.P. Cui, G.H. Fan, L. Geng, Y. Wang, H.W. Zhang, and H.X. Peng, Fabrication of fully dense TiAl-based composite sheets with a novel microlaminated microstructure, Scripta Mater., 66(2012), No. 5, p. 276.
      [6]
      Q. Peng, B. Yang, L.B. Liu, C.J. Song, and B. Friedrich, Porous TiAl alloys fabricated by sintering of TiH2 and Al powder mixtures, J. Alloys Compd., 656(2016), p. 530. doi: 10.1016/j.jallcom.2015.09.259
      [7]
      W. Sun, F.H. You, F.T. Kong, X.P. Wang, and Y.Y. Chen, Fracture mechanism of a high tensile strength and fracture toughness Ti6Al4V–TiAl laminated composite, J. Alloys Compd., 820(2020), art. No. 153088. doi: 10.1016/j.jallcom.2019.153088
      [8]
      G.P. Chaudhari and V.L. Acoff, Titanium aluminide sheets made using roll bonding and reaction annealing, Intermetallics, 18(2010), No. 4, p. 472. doi: 10.1016/j.intermet.2009.09.008
      [9]
      F. Appel, J.D.H. Paul, P. Staron, M. Oehring, O. Kolednik, J. Predan, and F.D. Fischer, The effect of residual stresses and strain reversal on the fracture toughness of TiAl alloys, Mater. Sci. Eng. A, 709(2018), p. 17. doi: 10.1016/j.msea.2017.10.010
      [10]
      X.F. Ding, J.P. Lin, L.Q. Zhang, Y.Q. Su, and G.L. Chen, Microstructural control of TiAl–Nb alloys by directional solidification, Acta Mater., 60(2012), No. 2, p. 498. doi: 10.1016/j.actamat.2011.10.009
      [11]
      R.G. Zhang and V.L. Acoff, Processing sheet materials by accumulative roll bonding and reaction annealing from Ti/Al/Nb elemental foils, Mater. Sci. Eng. A, 463(2007), No. 1-2, p. 67. doi: 10.1016/j.msea.2006.06.144
      [12]
      X.J. Xu, L.H. Xu, J.P. Lin, Y.L. Wang, Z. Lin, and G.L. Chen, Pilot processing and microstructure control of high Nb containing TiAl alloy, Intermetallics, 13(2005), No. 3-4, p. 337. doi: 10.1016/j.intermet.2004.07.007
      [13]
      R. Jafari, B. Eghbali, and M. Adhami, Influence of annealing on the microstructure and mechanical properties of Ti/Al and Ti/Al/Nb laminated composites, Mater. Chem. Phys., 213(2018), p. 313. doi: 10.1016/j.matchemphys.2018.04.001
      [14]
      Y.Q. Zhao, D. Zhang, Y.B. Sun, Z.J. Wang, R.X. Zheng, and C.L. Ma, Fabrication of TiAlNb alloy sheet by sintering pure metal foils, Rare Met., 30(2011), No. 1, p. 331.
      [15]
      Y.B. Sun, Y.Q. Zhao, D. Zhang, C.Y. Liu, H.Y. Diao, and C.L. Ma, Multilayered Ti–Al intermetallic sheets fabricated by cold rolling and annealing of titanium and aluminum foils, Trans. Nonferrous Met. Soc. China, 21(2011), No. 8, p. 1722. doi: 10.1016/S1003-6326(11)60921-7
      [16]
      A.M. Patselov, V.V. Rybin, B.A. Grinberg, M.A. Ivanov, and O.V. Eremina, Synthesis and properties of Ti–Al laminated composites with an intermetallic layer, Russ. Metall., 2011(2011), No. 4, p. 356. doi: 10.1134/S003602951104015X
      [17]
      H.L. Yu, C. Lu, A.K. Tieu, H.J. Li, A. Godbole, and C. Kong, Annealing effect on microstructure and mechanical properties of Al/Ti/Al laminate sheets, Mater. Sci. Eng. A, 660(2016), p. 195. doi: 10.1016/j.msea.2016.02.087
      [18]
      E. Basiri Tochaee, H.R. Madaah Hosseini, and S.M. Seyed Reihani, Fabrication of high strength in situ Al–Al3Ti nanocomposite by mechanical alloying and hot extrusion: Investigation of fracture toughness, Mater. Sci. Eng. A, 658(2016), p. 246. doi: 10.1016/j.msea.2016.02.010
      [19]
      M. Shaat, A. Fathy, and A. Wagih, Correlation between grain boundary evolution and mechanical properties of ultrafine-grained metals, Mech. Mater., 143(2020), art. No. 103321. doi: 10.1016/j.mechmat.2020.103321
      [20]
      D.S. Chung, M. Enoki, and T. Kishi, Microstructural analysis and mechanical properties of in situ Nb/Nb-aluminide layered materials, Sci. Technol. Adv. Mater., 3(2002), No. 2, p. 129. doi: 10.1016/S1468-6996(02)00007-4
      [21]
      K.R. Coffey, K. Barmak, D.A. Rudman, and S. Foner, Thin film reaction kinetics of niobium/aluminum multilayers, J. Appl. Phys., 72(1992), No. 4, p. 1341. doi: 10.1063/1.351744
      [22]
      G. Lucadamo, K. Barmak, D.T. Carpenter, and J.M. Rickman, Microstructure evolution during solid state reactions of Nb/Al multilayers, Acta Mater., 49(2001), No. 14, p. 2813. doi: 10.1016/S1359-6454(01)00176-8
      [23]
      L. Xu, Y.Y. Cui, Y.L. Hao, and R. Yang, Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples, Mater. Sci. Eng. A, 435-436(2006), p. 638. doi: 10.1016/j.msea.2006.07.077
      [24]
      D. Zhang, Y.B. Sun, Y.Q. Zhao, T.T. Wang, J. Chen, H.X. Li, and C.L. Ma, Interfacial products in SiC fiber reinforced Ti–Al based intermetallic alloys, Rare Met., 30(2011), No. 1, p. 524. doi: 10.1007/s12598-011-0338-x
      [25]
      H. Wu, G.H. Fan, X.P. Cui, L. Geng, S.H. Qin, and M. Huang, A novel approach to accelerate the reaction between Ti and Al, Micron, 56(2014), p. 49. doi: 10.1016/j.micron.2013.10.005
      [26]
      Y. Mishin and C. Herzig, Diffusion in the Ti–Al system, Acta Mater., 48(2000), No. 3, p. 589. doi: 10.1016/S1359-6454(99)00400-0
      [27]
      F.J.J. Van Loo and G.D. Rieck, Diffusion in the titanium-aluminium system—I. Interdiffusion between solid Al and Ti or Ti–Al alloys, Acta Metall., 21(1973), No. 1, p. 61. doi: 10.1016/0001-6160(73)90220-4
      [28]
      J.G. Luo and V.L. Acoff, Interfacial reactions of titanium and aluminum during diffusion welding, Weld. J., 79(2000), No. 9, p. 239.
      [29]
      D.M. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypien, A. Korneva, Z. Szulc, N. Schell, and P. Zieba, Structural properties of Ti/Al clads manufactured by explosive welding and annealing, Mater. Des., 91(2016), p. 80. doi: 10.1016/j.matdes.2015.11.087
      [30]
      N. Bay, Mechanisms producing metallic bonds in cold welding, Weld. J., 62(1983), No. 5, p. 137.
      [31]
      G. Slama and A. Vignes, Coating of niobium and niobium alloys with aluminium: Part II. Hot-dipped coatings, J. Less Common Met., 24(1971), No. 1, p. 1. doi: 10.1016/0022-5088(71)90163-9
      [32]
      M. Ma, P. Huo, W.C. Liu, G.J. Wang, and D.M. Wang, Microstructure and mechanical properties of Al/Ti/Al laminated composites prepared by roll bonding, Mater. Sci. Eng. A, 636(2015), p. 301. doi: 10.1016/j.msea.2015.03.086
      [33]
      M. Nofar, H.R. Madaah Hosseini, and N. Kolagar-Daroonkolaie, Fabrication of high wear resistant Al/Al3Ti metal matrix composite by in situ hot press method, Mater. Des., 30(2009), No. 2, p. 280. doi: 10.1016/j.matdes.2008.04.071
      [34]
      D.J. Goda, N.L. Richards, W.F. Caley, and M.C. Chaturvedi, The effect of processing variables on the structure and chemistry of Ti-aluminide based LMCS, Mater. Sci. Eng. A, 334(2002), No. 1-2, p. 280. doi: 10.1016/S0921-5093(01)01894-9
      [35]
      V.P. Dybkov, Growth Kinetics of Chemical Compound Layers, Cambridge International Science Publishing Ltd, 1998.
      [36]
      M. Mirjalili, M. Soltanieh, K. Matsuura, and M. Ohno, On the kinetics of TiAl3 intermetallic layer formation in the titanium and aluminum diffusion couple, Intermetallics, 32(2013), p. 297. doi: 10.1016/j.intermet.2012.08.017
      [37]
      X.Y. Liu and P. Bennema, Morphology of crystals: Internal and external controlling factors, Phys. Rev. B, 49(1994), No. 2, p. 765. doi: 10.1103/PhysRevB.49.765
      [38]
      P. Villars and H. Okamoto, Al–Nb Binary Phase Diagram 0–100 at.% Nb, Springer Materials, Japan [2016-06-02]. http://materials.springer.com/isp/phase-diagram/docs/c_0103042
      [39]
      X.P. Cui, G.H. Fan, L. Geng, Y. Wang, L.J. Huang, and H.X. Peng, Growth kinetics of TiAl3 layer in multi-laminated Ti–(TiB2/Al) composite sheets during annealing treatment, Mater. Sci. Eng. A, 539(2012), p. 337. doi: 10.1016/j.msea.2012.01.107
      [40]
      Y. Nakayama and H. Mabuchi, Formation of ternary L12 compounds in Al3Ti-base alloys, Intermetallics, 1(1993), No. 1, p. 41. doi: 10.1016/0966-9795(93)90020-V
      [41]
      T. Takemoto and I. Okamoto, Intermetallic compounds formed during brazing of titanium with aluminium filler metals, J. Mater. Sci., 23(1988), No. 4, p. 1301. doi: 10.1007/BF01154593

    Catalog


    • /

      返回文章
      返回