留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 8
Aug.  2022

图(8)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  2692
  • HTML全文浏览量:  353
  • PDF下载量:  24
  • 被引次数: 0
Lixin Hong, Rongxiang Wang,  and Xiaobo Zhang, Effects of Nd on microstructure and mechanical properties of as-cast Mg–12Gd–2Zn–xNd–0.4Zr alloys with stacking faults, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1570-1577. https://doi.org/10.1007/s12613-021-2264-8
Cite this article as:
Lixin Hong, Rongxiang Wang,  and Xiaobo Zhang, Effects of Nd on microstructure and mechanical properties of as-cast Mg–12Gd–2Zn–xNd–0.4Zr alloys with stacking faults, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1570-1577. https://doi.org/10.1007/s12613-021-2264-8
引用本文 PDF XML SpringerLink
研究论文

Nd对含堆垛层错的铸态Mg–12Gd–2Zn–xNd–0.4Zr合金组织和力学性能的影响

  • 通讯作者:

    章晓波    E-mail: xbxbzhang2003@163.com

  • 镁合金以其高比强度、高比刚度、低密度等优点在航空航天、交通运输等领域显示出越来越大的潜力。但在实际使用过程中,镁合金仍存在塑性差、绝对屈服强度偏低、拉压不对称等问题。为了研究稀土元素Nd对镁合金显微组织和力学性能的影响与强化机制,本文以Mg–12Gd–2Zn–xNd–0.4Zr合金为研究对象,分别添加0, 0.5wt%, 1wt%的Nd元素。通过光学显微镜、扫描电镜、能谱仪、透射电镜和XRD研究Nd对Mg–12Gd–2Zn–xNd–0.4Zr合金显微组织的影响,通过拉伸试验机、纳米压痕仪和显微硬度计测试了合金的力学性能。结果表明:显微组织主要由α–Mg基体、共晶相和堆垛层错(SFs)组成;Nd的加入对晶粒细化和组织均匀化起着重要作用。随着Nd添加量的增加,合金的拉伸屈服强度和显微硬度增加,压缩屈服强度降低,导致合金的反向拉压不对称性减弱。当Nd含量为1wt%时,合金的力学性能最好,其抗拉强度和抗压强度分别达到194 MPa和397 MPa,压缩屈服强度和拉伸屈服强度比值降低为1.05。
  • Research Article

    Effects of Nd on microstructure and mechanical properties of as-cast Mg–12Gd–2Zn–xNd–0.4Zr alloys with stacking faults

    + Author Affiliations
    • In order to study the effects of Nd addition on microstructure and mechanical properties of Mg–Gd–Zn–Zr alloys, the microstructure and mechanical properties of the as-cast Mg–12Gd–2Zn–xNd–0.4Zr (x = 0, 0.5wt%, and 1wt%) alloys were investigated by using optical microscope, scanning electron microscope, X-ray diffractometer, nano indentation tester, microhardness tester, and tensile testing machine. The results show that the microstructures mainly consist of α-Mg matrix, eutectic phase, and stacking faults. The addition of Nd plays a significant role in grain refinement and uniform microstructure. The tensile yield strength and microhardness increase but the compression yield strength decreases with increasing Nd addition, leading to weakening tension–compression yield asymmetry in reverse of the Mg–12Gd–2Zn–xNd–0.4Zr alloys. The highest ultimate tensile strength (194 MPa) and ultimate compression strength (397 MPa) are obtained with 1wt% Nd addition of the alloy.
    • loading
    • [1]
      Y.X. Li, C.L. Yang, X.Q. Zeng, P.P. Jin, D. Qiu, and W.J. Ding, Microstructure evolution and mechanical properties of magnesium alloys containing long period stacking ordered phase, Mater. Charact., 141(2018), p. 286. doi: 10.1016/j.matchar.2018.04.044
      [2]
      D.K. Xu, E.H. Han, and Y.B. Xu, Effect of long-period stacking ordered phase on microstructure, mechanical property and corrosion resistance of Mg alloys: A review, Prog. Nat. Sci. Mater. Int., 26(2016), No. 2, p. 117. doi: 10.1016/j.pnsc.2016.03.006
      [3]
      Q.Z. Liu, X.F. Ding, Y.P. Liu, and X.J. Wei, Analysis on micro-structure and mechanical properties of Mg–Gd–Y–Nd–Zr alloy and its reinforcement mechanism, J. Alloys Compd., 690(2017), p. 961. doi: 10.1016/j.jallcom.2016.08.056
      [4]
      J.S. Xie, J.H. Zhang, Z.H. You, et al., Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying, J. Magnes. Alloys, 9(2021), No. 1, p. 41. doi: 10.1016/j.jma.2020.08.016
      [5]
      A.M. Majd, M. Farzinfar, M. Pashakhanlou, and M.J. Nayyeri, Effect of RE elements on the microstructural and mechanical properties of as-cast and age hardening processed Mg–4Al–2Sn alloy, J. Magnes. Alloys, 6(2018), No. 3, p. 309. doi: 10.1016/j.jma.2018.07.003
      [6]
      Z. Zhang, J.H. Zhang, J. Wang, et al., Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
      [7]
      S.J. Wang, Z. Han, Y.J. Nie, et al., Modified mechanical properties of Mg–Nd–Zn–Ag–Zr alloy by solution treatment for cardiovascular stent application, Mater. Res. Express, 6(2019), No. 8, art. No. 085416. doi: 10.1088/2053-1591/ab27ee
      [8]
      W.B. Luo, Z.Y. Xue, and W.M. Mao, Effect of heat treatment on the microstructure and micromechanical properties of the rapidly solidified Mg61.7Zn34Gd4.3 alloy containing icosahedral phase, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 869. doi: 10.1007/s12613-019-1799-4
      [9]
      J.X. Chen, L.L. Tan, I.P. Etim, and K. Yang, Comparative study of the effect of Nd and Y content on the mechanical and biodegradable properties of Mg–Zn–Zr–xNd/Y (x = 0.5, 1, 2) alloys, Mater. Technol., 33(2018), No. 10, p. 659. doi: 10.1080/10667857.2018.1492227
      [10]
      L.K. Singh, A. Bhadauria, A. Srinivasan, U.T.S. Pillai, and B.C. Pai, Effects of gadolinium addition on the microstructure and mechanical properties of Mg–9Al alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 901. doi: 10.1007/s12613-017-1476-4
      [11]
      X.B. Zhang, J.W. Dai, Q.S. Dong, Z.X. Ba, and Y.J. Wu, Corrosion behavior and mechanical degradation of as-extruded Mg–Gd–Zn–Zr alloys for orthopedic application, J. Biomed. Mater. Res. Part B, 108(2020), No. 3, p. 698. doi: 10.1002/jbm.b.34424
      [12]
      Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto, Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa, Mater. Trans., 42(2001), No. 7, p. 1172. doi: 10.2320/matertrans.42.1172
      [13]
      A. Inoue, Y. Kawamura, M. Matsushita, K. Hayashi, and J. Koike, Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg–Zn–Y system, J. Mater. Res., 16(2001), No. 7, p. 1894. doi: 10.1557/JMR.2001.0260
      [14]
      Y.H. Zhang, Y.Q. Li, W. Zhang, et al., Gaseous hydrogen storage properties of Mg–Y–Ni–Cu alloys prepared by melt spinning, J. Rare Earths, 37(2019), No. 7, p. 750. doi: 10.1016/j.jre.2018.10.003
      [15]
      Z.W. Geng, D.H. Xiao, and L. Chen, Microstructure, mechanical properties, and corrosion behavior of degradable Mg–Al–Cu–Zn–Gd alloys, J. Alloys Compd., 686(2016), p. 145. doi: 10.1016/j.jallcom.2016.05.288
      [16]
      Z.B. Ding, Y.H. Zhao, R.P. Lu, et al., Effect of Zn addition on microstructure and mechanical properties of cast Mg–Gd–Y–Zr alloys, Trans. Nonferrous Met. Soc. China, 29(2019), No. 4, p. 722. doi: 10.1016/S1003-6326(19)64982-4
      [17]
      S.J. Ouyang, W.C. Liu, G.H. Wu, et al., Microstructure and mechanical properties of as-cast Mg–8Li–xZn–yGd (x = 1, 2, 3, 4; y = 1, 2) alloys, Trans. Nonferrous Met. Soc. China, 29(2019), No. 6, p. 1211. doi: 10.1016/S1003-6326(19)65028-4
      [18]
      K. Hagihara, Z.X. Li, M. Yamasaki, Y. Kawamura, and T. Nakano, Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys, Acta Mater., 163(2019), p. 226. doi: 10.1016/j.actamat.2018.10.016
      [19]
      N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, and D.L. Chen, Strengthening mechanisms in magnesium alloys containing ternary I, W and LPSO phases, J. Mater. Sci. Technol., 34(2018), No. 7, p. 1110. doi: 10.1016/j.jmst.2017.12.005
      [20]
      J.W. Dai, X.B. Zhang, Y. Fei, Z.Z. Wang, and H.M. Sui, Effect of solution treatment on microstructure and corrosion properties of Mg–4Gd–1Y–1Zn–0.5Ca–1Zr alloy, Acta Metall. Sinica Engl. Lett., 31(2018), No. 8, p. 865. doi: 10.1007/s40195-018-0709-5
      [21]
      Z.Y. Xue, Y.J. Ren, W.B. Luo, Y. Ren, P. Xu, and C. Xu, Microstructure evolution and mechanical properties of a large-sized ingot of Mg−9Gd−3Y−1.5Zn−0.5Zr (wt%) alloy after a lower-temperature homogenization treatment, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 271. doi: 10.1007/s12613-017-1405-6
      [22]
      C. Xu, J.H. Zhang, S.J. Liu, et al., Microstructure, mechanical and damping properties of Mg–Er–Gd–Zn alloy reinforced with stacking faults, Mater. Des., 79(2015), p. 53. doi: 10.1016/j.matdes.2015.04.037
      [23]
      Y. Feng, J.H. Zhang, P.F. Qin, et al., Characterization of elevated-temperature high strength and decent thermal conductivity extruded Mg–Er–Y–Zn alloy containing nano-spaced stacking faults, Mater. Charact., 155(2019), art. No. 109823. doi: 10.1016/j.matchar.2019.109823
      [24]
      L. Zhang, J.H. Zhang, C. Xu, Y.B. Jing, J.P. Zhuang, R.Z. Wu, and M.L. Zhang, Formation of stacking faults for improving the performance of biodegradable Mg–Ho–Zn alloy, Mater. Lett., 133(2014), p. 158. doi: 10.1016/j.matlet.2014.06.171
      [25]
      H.J. Si, Y.X. Jiang, Y. Tang, and L.J. Zhang, Stable and metastable phase equilibria in binary Mg–Gd system: A comprehensive understanding aided by CALPHAD modeling, J. Magnes. Alloys, 7(2019), No. 3, p. 501. doi: 10.1016/j.jma.2019.04.006
      [26]
      X.B. Zhang, Z.X. Ba, Z.Z. Wang, Y.J. Wu, and Y.J. Xue, Effect of LPSO structure on mechanical properties and corrosion behavior of as-extruded GZ51K magnesium alloy, Mater. Lett., 163(2016), p. 250. doi: 10.1016/j.matlet.2015.10.084
      [27]
      X.G. Zhang, L.G. Meng, C.F. Fang, P. Peng, F. Ja, and H. Hao, Effect of Nd on the microstructure and mechanical properties of Mg–8Gd–5Y–2Zn–0.5Zr alloy, Mater. Sci. Eng. A, 586(2013), p. 19. doi: 10.1016/j.msea.2013.05.089
      [28]
      Z.B. Ding, R.P. Lu, Y.H. Zhao, et al., The microstructure and mechanical properties of As-cast Mg–10Gd–3Y–xZn–0.6Zr (x = 0, 0.5, 1 and 2 wt%) alloys, Mater. Res., 21(2018), No. 5, art. No. e20170992. doi: 10.1590/1980-5373-MR-2017-0992
      [29]
      M. Li, K. Zhang, Z.W. Du, X.G. Li, and M.L. Ma, Microstructure evolution and mechanical properties of Mg–7Gd–3Y–1Nd–1Zn–0.5Zr alloy, Trans. Nonferrous Met. Soc. China, 26(2016), No. 7, p. 1835. doi: 10.1016/S1003-6326(16)64230-9
      [30]
      F.S. Pan, S.Q. Luo, A.T. Tang, J. Peng, and Y. Lu, Influence of stacking fault energy on formation of long period stacking ordered structures in Mg–Zn–Y–Zr alloys, Prog. Nat. Sci.: Mater. Int., 21(2011), No. 6, p. 485. doi: 10.1016/S1002-0071(12)60087-2
      [31]
      S. Kamrani and C. Fleck, Effects of calcium and rare-earth elements on the microstructure and tension–compression yield asymmetry of ZEK100 alloy, Mater. Sci. Eng. A, 618(2014), p. 238. doi: 10.1016/j.msea.2014.09.023
      [32]
      E. Dogan, I. Karaman, G. Ayoub, and G. Kridli, Reduction in tension–compression asymmetry via grain refinement and texture design in Mg–3Al–1Zn sheets, Mater. Sci. Eng. A, 610(2014), p. 220. doi: 10.1016/j.msea.2014.04.112
      [33]
      S.H. Park, J.H. Lee, B.G. Moon, and B.S. You, Tension–compression yield asymmetry in as-cast magnesium alloy, J. Alloys Compd., 617(2014), p. 277. doi: 10.1016/j.jallcom.2014.07.164
      [34]
      Y. Jiang, Y.A. Chen, and Y. Wang, Compound role of tension twins and compression twins in microstructure and mechanical properties of Mg–Sn–Li rod, Mater. Sci. Eng. A, 682(2017), p. 31. doi: 10.1016/j.msea.2016.11.023
      [35]
      X.Y. Xu, X.H. Chen, W.W. Du, Y.X. Geng, and F.S. Pan, Effect of Nd on microstructure and mechanical properties of as-extruded Mg–Y–Zr–Nd alloy, J. Mater. Sci. Technol., 33(2017), No. 9, p. 926. doi: 10.1016/j.jmst.2017.04.011
      [36]
      G.S. Hu, D.F. Zhang, T. Tang, et al., Effects of Nd addition on microstructure and mechanical properties of Mg–6Zn–1Mn–4Sn alloy, Mater. Sci. Eng. A, 634(2015), p. 5. doi: 10.1016/j.msea.2015.03.040
      [37]
      X. Liu, Z.Q. Zhang, Q.C. Le, and L. Bao, Effects of Nd/Gd value on the microstructures and mechanical properties of Mg–Gd–Y–Nd–Zr alloys, J. Magnes. Alloys, 4(2016), No. 3, p. 214. doi: 10.1016/j.jma.2016.06.002
      [38]
      X. Zhang, J. Dai, H. Yang, S. Liu, X. He, and Z. Wang, Influence of Gd and Ca on microstructure, mechanical and corrosion properties of Mg–Gd–Zn(–Ca) alloys, Mater. Technol., 32(2017), No. 7, p. 399. doi: 10.1080/10667857.2016.1262310
      [39]
      H. Zengin and Y. Turen, Effect of Y addition on microstructure and corrosion behavior of extruded Mg-Zn–Nd–Zr alloy, J. Magnes. Alloys, 8(2020), No. 3, p. 640. doi: 10.1016/j.jma.2020.06.004
      [40]
      K. Matsubara, H. Kimizuka, and S. Ogata, Formation of $ \{11\bar{2}1\} $ twins from I1-type stacking faults in Mg: A molecular dynamics study, Comput. Mater. Sci., 122(2016), p. 314. doi: 10.1016/j.commatsci.2016.05.033
      [41]
      B.L. Yin, Z.X. Wu, and W.A. Curtin, First-principles calculations of stacking fault energies in Mg–Y, Mg–Al and Mg–Zn alloys and implications for <c + a> activity, Acta Mater., 136(2017), p. 249. doi: 10.1016/j.actamat.2017.06.062
      [42]
      Y.X. Du, Y.J. Wu, L.M. Peng, J. Chen, X.Q. Zeng, and W.J. Ding, Formation of lamellar phase with 18R-type LPSO structure in an as-cast Mg96Gd3Zn1(at%) alloy, Mater. Lett., 169(2016), p. 168. doi: 10.1016/j.matlet.2015.12.080
      [43]
      Y.J. Wu, D.L. Lin, X.Q. Zeng, L.M. Peng, and W.J. Ding, Formation of a lamellar 14H-type long period stacking ordered structure in an as-cast Mg–Gd–Zn–Zr alloy, J. Mater. Sci., 44(2009), No. 6, p. 1607. doi: 10.1007/s10853-008-3213-x
      [44]
      X. Zhang, S.K. Kairy, J. Dai, and N. Birbilis, A closer look at the role of nanometer scale solute-rich stacking faults in the localized corrosion of a magnesium alloy GZ31K, J. Electrochem. Soc., 165(2018), No. 7, p. C310. doi: 10.1149/2.0391807jes
      [45]
      X.B. Zhang, J.W. Dai, R.F. Zhang, Z.X. Ba, and N. Birbilis, Corrosion behavior of Mg–3Gd–1Zn–0.4Zr alloy with and without stacking faults, J. Magnes. Alloys, 7(2019), No. 2, p. 240. doi: 10.1016/j.jma.2019.02.009
      [46]
      S.Q. Yin, Z.Q. Zhang, X. Liu, et al., Effects of Zn/Gd ratio on the microstructures and mechanical properties of Mg–Zn–Gd–Zr alloys, Mater. Sci. Eng. A, 695(2017), p. 135. doi: 10.1016/j.msea.2017.03.117
      [47]
      X.M. Zong, D. Wang, W. Liu, K.B. Nie, C.X. Xu, and J.S. Zhang, Effect of precipitated phases on corrosion of Mg95.8Gd3Zn1Zr0.2 alloy with long-period stacking ordered structure, Acta Metall. Sinica Engl. Lett., 29(2016), No. 1, p. 32. doi: 10.1007/s40195-015-0359-9
      [48]
      Y.J. Wu, X.Q. Zeng, D.L. Lin, L.M. Peng, and W.J. Ding, The microstructure evolution with lamellar 14H-type LPSO structure in an Mg96.5Gd2.5Zn1 alloy during solid solution heat treatment at 773 K, J. Alloys Compd., 477(2009), No. 1-2, p. 193. doi: 10.1016/j.jallcom.2008.10.126
      [49]
      W.J. Ding, Y.J. Wu, L.M. Peng, X.Q. Zeng, G.Y. Yuan, and D.L. Lin, Formation of 14H-type long period stacking ordered structure in the as-cast and solid solution treated Mg–Gd–Zn–Zr alloys, J. Mater. Res., 24(2009), No. 5, p. 1842. doi: 10.1557/jmr.2009.0215
      [50]
      J.Y. Zhang, M. Xu, X.Y. Teng, and M. Zuo, Effect of Gd addition on microstructure and corrosion behaviors of Mg–Zn–Y alloy, J. Magnes. Alloys, 4(2016), No. 4, p. 319. doi: 10.1016/j.jma.2016.09.003
      [51]
      J. Wei, Q.D. Wang, L. Zhang, et al., Microstructure refinement of Mg–Al–RE alloy by Gd addition, Mater. Lett., 246(2019), p. 125. doi: 10.1016/j.matlet.2019.02.126
      [52]
      X.Y. Hu, P.H. Fu, D. StJohn, L.M. Peng, M. Sun, and M.X. Zhang, On grain coarsening and refining of the Mg–3Al alloy by Sm, J. Alloys Compd., 663(2016), p. 387. doi: 10.1016/j.jallcom.2015.11.193
      [53]
      K. Wei, L.R. Xiao, B. Gao, et al., Enhancing the strain hardening and ductility of Mg–Y alloy by introducing stacking faults, J. Magnes. Alloys, 8(2020), No. 4, p. 1221. doi: 10.1016/j.jma.2019.09.015
      [54]
      J.H. He, L. Jin, F.H. Wang, S. Dong, and J. Dong, Mechanical properties of Mg–8Gd–3Y–0.5Zr alloy with bimodal grain size distributions, J. Magnes. Alloys, 5(2017), No. 4, p. 423. doi: 10.1016/j.jma.2017.09.004
      [55]
      S. Lv, F.Z. Meng, X.L. Lu, et al., Influence of Nd addition on microstructures and mechanical properties of a hot-extruded Mg−6.0Zn−0.5Zr (wt.%) alloy, J. Alloys Compd., 806(2019), p. 1166. doi: 10.1016/j.jallcom.2019.07.300
      [56]
      P. Papanastasiou and D. Durban, Singular crack-tip plastic fields in Tresca and Mohr-Coulomb solids, Int. J. Solids Struct., 136-137(2018), p. 250. doi: 10.1016/j.ijsolstr.2017.12.018
      [57]
      Q.H. Wang, Y. Song, B. Jiang, et al., Fabrication of Mg/Mg composite with sleeve-core structure and its effect on room-temperature yield asymmetry via bimetal casting-co-extrusion, Mater. Sci. Eng. A, 769(2020), art. No. 138476. doi: 10.1016/j.msea.2019.138476
      [58]
      L.B. Tong, M.Y. Zheng, S. Kamado, et al., Reducing the tension–compression yield asymmetry of extruded Mg–Zn–Ca alloy via equal channel angular pressing, J. Magnes. Alloys, 3(2015), No. 4, p. 302. doi: 10.1016/j.jma.2015.08.007
      [59]
      H.H. Yu, Y.C. Xin, M.Y. Wang, and Q. Liu, Hall-Petch relationship in Mg alloys: A review, J. Mater. Sci. Technol., 34(2018), No. 2, p. 248. doi: 10.1016/j.jmst.2017.07.022
      [60]
      Y.Q. Chi, X.H. Zhou, X.G. Qiao, H.G. Brokmeier, and M.Y. Zheng, Tension–compression asymmetry of extruded Mg–Gd–Y–Zr alloy with a bimodal microstructure studied by in situ synchrotron diffraction, Mater. Des., 170(2019), art. No. 107705. doi: 10.1016/j.matdes.2019.107705

    Catalog


    • /

      返回文章
      返回