Cite this article as:

Pian Zhang, Yun-hao Wu, Hao-ran Sun, Jia-qi Zhao, Zhi-ming Cheng, and Xiao-hong Kang, MnO2/carbon nanocomposite based on silkworm excrement for high-performance supercapacitors, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp.1735-1744. https://dx.doi.org/10.1007/s12613-021-2272-8
Pian Zhang, Yun-hao Wu, Hao-ran Sun, Jia-qi Zhao, Zhi-ming Cheng, and Xiao-hong Kang, MnO2/carbon nanocomposite based on silkworm excrement for high-performance supercapacitors, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp.1735-1744. https://dx.doi.org/10.1007/s12613-021-2272-8
引用本文 PDF XML SpringerLink

用于高性能超级电容器的基于蚕沙的二氧化锰/碳纳米复合材料

MnO2/carbon nanocomposite based on silkworm excrement for high-performance supercapacitors

Abstract: MnO2/biomass carbon nanocomposite was synthesized by a facile hydrothermal reaction. Silkworm excrement acted as a carbon precursor, which was activated by ZnCl2 and FeCl3 combining chemical agents under Ar atmosphere. Thin and flower-like MnO2 nanowires were in-situ anchored on the surface of the biomass carbon. The biomass carbon not only offered high conductivity and good structural stability but also relieved the large volume expansion during the charge/discharge process. The obtained MnO2/biomass carbon nanocomposite electrode exhibited a high specific capacitance (238 F·g−1 at 0.5 A·g−1) and a superior cycling stability with only 7% degradation after 2000 cycles. The observed good electrochemical performance is accredited to the materials’ high specific surface area, multilevel hierarchical structure, and good conductivity. This study proposes a promising method that utilizes biological waste and broadens MnO2-based electrode material application for next-generation energy storage and conversion devices.

 

/

返回文章
返回