Cite this article as:

Hassan Jafari, Amir Houshang Mojiri Tehrani, and Mahsa Heydari, Effect of extrusion process on microstructure and mechanical and corrosion properties of biodegradable Mg–5Zn–1.5Y magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp.490-502. https://dx.doi.org/10.1007/s12613-021-2275-5
Hassan Jafari, Amir Houshang Mojiri Tehrani, and Mahsa Heydari, Effect of extrusion process on microstructure and mechanical and corrosion properties of biodegradable Mg–5Zn–1.5Y magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp.490-502. https://dx.doi.org/10.1007/s12613-021-2275-5
引用本文 PDF XML SpringerLink

挤压工艺对可生物降解 Mg–5Zn–1.5Y 镁合金显微组织及力学性能和腐蚀性能的影响

摘要: 本研究分析了挤压温度和挤压比对 Mg–5Zn–1.5Y 合金的显微组织、硬度、压缩和腐蚀行为的影响。显微组织观察表明,铸造合金由α-Mg晶粒和Mg3Zn6Y和Mg3Zn3Y2金属间化合物组成,主要位于α-Mg晶界上。较高温度下的挤压合金显示出较粗的晶粒微观结构,而以较高比率挤压的合金含有较细的微观结构,尽管在两种条件下都测量到具有较低金属间化合物的更多动态再结晶晶粒。较低温度 (340°C) 和较高比率 (1:11.5) 的组合条件提供了较高的抗压强度。然而,没有实现显着的硬度改善。挤压工艺可以降低铸造合金在模拟体液中的腐蚀率超过 80%,这主要是由于细化了微观结构。与挤压比相比,挤压温度对耐腐蚀性能的影响更为显着,挤压温度越高,耐腐蚀性能越高。

 

Effect of extrusion process on microstructure and mechanical and corrosion properties of biodegradable Mg–5Zn–1.5Y magnesium alloy

Abstract: The effect of extrusion temperature and ratio on the microstructure, hardness, compression, and corrosion behavior of Mg–5Zn–1.5Y alloy were analyzed in this study. The microstructural observations revealed that the cast alloy consists of α-Mg grains, and Mg3Zn6Y and Mg3Zn3Y2 intermetallic compounds, mostly located on the α-Mg grain boundaries. Extruded alloy at higher temperatures showed coarser grain microstructures, whereas those extruded at higher ratios contained finer ones, although more dynamic recrystalized grains with lower intermetallics were measured at both conditions. Combined conditions of the lower temperature (340°C) and higher ratio (1:11.5) provided higher compressive strengths. However, no significant hardness improvement was achieved. The extrusion process could decrease the corrosion rate of the cast alloy in simulated body fluid for over 80% due to primarily the refined microstructure. The extrusion temperature showed a more pronounced effect on corrosion resistance compared to the extrusion ratio, and the higher the extrusion temperature, the higher the corrosion resistance.

 

/

返回文章
返回