留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 8
Aug.  2022

图(12)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  1106
  • HTML全文浏览量:  328
  • PDF下载量:  48
  • 被引次数: 0
Jun Wang, Fan Zhao, Guoliang Xie, Jiaxuan Xu,  and Xinhua Liu, Hot compressive deformation of eutectic Al–17at% Cu alloy on the interface of the Cu–Al composite plate produced by horizontal continuous casting, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1578-1588. https://doi.org/10.1007/s12613-021-2276-4
Cite this article as:
Jun Wang, Fan Zhao, Guoliang Xie, Jiaxuan Xu,  and Xinhua Liu, Hot compressive deformation of eutectic Al–17at% Cu alloy on the interface of the Cu–Al composite plate produced by horizontal continuous casting, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1578-1588. https://doi.org/10.1007/s12613-021-2276-4
引用本文 PDF XML SpringerLink
研究论文

水平连铸铜铝复合板带界面Al–17at%Cu共晶合金热变形行为

  • 通讯作者:

    刘新华    E-mail: Liuxinhua18@163.com

文章亮点

  • (1) 探究了冷却速率对Al–17at%Cu共晶合金组织的影响规律。
  • (2) 分析了Al–17at%Cu共晶合金的热变形行为并建立其流变应力本构方程。
  • (3) 提出了铜铝双金属复合板材塑性变形过程中界面的演变过程。
  • 铜铝双金属复合板材具有纯铜的高导电导热和纯铝的轻质廉价等特性,可代替铜合金制品应用于航空航天、交通运输和装饰建材等领域,解我国铜资源短缺、严重依赖进口之危,缓铝产能过剩、资源严重流失之困,近年来受到人们的广泛关注。在众多铜铝双金属复合板材的制备技术中,连铸复合直接成形技术实现了铜铝双金属复合板材铸造、复合和成形的一体化,生产流程短、效率高,板材界面结合强度高,具有较为广阔的发展前景。水平连铸制备的铜铝复合板带界面中共晶组织层厚度占界面总厚度的90%以上,其在后续轧制成形加工中的变形行为对成形后复合板带的质量影响显著。本文通过改变铸锭凝固时的冷却速率,制备铜铝复合板带界面共晶组织材料,研究其在热压缩过程中的变形行为。研究结果表明:当变形温度大于300°C时,共晶组织中α-Al的动态再结晶软化作用大于加工硬化作用,共晶组织发生均匀的塑性变形。并采用Arrhenius型双曲正弦模型建立了共晶组织流变应力本构方程,为铜铝复合板带的加工成形过程提供可靠的理论依据。
  • Research Article

    Hot compressive deformation of eutectic Al–17at% Cu alloy on the interface of the Cu–Al composite plate produced by horizontal continuous casting

    + Author Affiliations
    • On the interface of the Cu–Al composite plate from horizontal continuous casting, the eutectic microstructure layer thickness accounts for more than 90% of the total interface thickness, and the deformation in rolling forming plays an important role in the quality of the composite plate. The eutectic microstructure material on the interface of the Cu–Al composite plate was prepared by changing the cooling rate of ingot solidification and the deformation in hot compression was investigated. The results show that when the deformation temperature is over 300°C, the softening effect of dynamic recrystallization of α-Al is greater than the hardening effect, and uniform plastic deformation of eutectic microstructure is caused. The constitutive equation of flow stress in the eutectic microstructure layer was established by Arrhenius hyperbolic-sine mathematics model, providing a reliable theoretical basis for the deformation of the Cu–Al composite plate.
    • loading
    • [1]
      T. Liu, P. Liu, and Q.D. Wang, Research progress on copper/aluminum bimetal composite, Mater. Rev., 27(2013), No. 19, p. 1.
      [2]
      S.Y. Liu, A.Q. Wang, S.J. Lyu, and H.W. Tian, Interfacial properties and further processing of Cu/Al laminated composite: A review, Mater. Rev., 32(2018), No. 5, p. 828.
      [3]
      Y.J. Su, X.H. Liu, Y.F. Wu, H.Y. Huang, and J.X. Xie, Numerical simulation of temperature field in horizontal core-filling continuous casting for copper cladding aluminum rods, Int. J. Miner. Metall. Mater., 20(2013), No. 7, p. 684. doi: 10.1007/s12613-013-0784-6
      [4]
      H.M. Xia, L. Zhang, Y.C. Zhu, N. Li, Y.Q. Sun, J.D. Zhang, and H.Z. Ma, Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1295. doi: 10.1007/s12613-020-2009-0
      [5]
      R.Y. Feng, W.X. Wang, Z.F. Yan, D.H. Wang, S.P. Wan, and N. Shi, Fatigue limit assessment of a 6061 aluminum alloy based on infrared thermography and steady ratcheting effect, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1301. doi: 10.1007/s12613-019-1942-2
      [6]
      Z.H. Deng, H.Q. Yin, X. Jiang, C. Zhang, G.F. Zhang, B. Xu, G.Q. Yang, T. Zhang, M. Wu, and X.H. Qu, Machine-learning-assisted prediction of the mechanical properties of Cu–Al alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 362. doi: 10.1007/s12613-019-1894-6
      [7]
      M.M.H. Athar and B. Tolaminejad, Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding, Mater. Des., 86(2015), p. 516. doi: 10.1016/j.matdes.2015.07.114
      [8]
      M.M. Hoseini-Athar and B. Tolaminejad, Interface morphology and mechanical properties of Al–Cu–Al laminated composites fabricated by explosive welding and subsequent rolling process, Met. Mater. Int., 22(2016), No. 4, p. 670. doi: 10.1007/s12540-016-5687-4
      [9]
      T. Wang, S. Li, Z.K. Ren, J.C. Han, and Q.X. Huang, A novel approach for preparing Cu/Al laminated composite based on corrugated roll, Mater. Lett., 234(2019), p. 79. doi: 10.1016/j.matlet.2018.09.060
      [10]
      L. Li, K. Nagai, and F.X. Yin, Progress in cold roll bonding of metals, Sci. Technol. Adv. Mater., 9(2008), No. 2, art. No. 023001. doi: 10.1088/1468-6996/9/2/023001
      [11]
      X.B. Li, G.Y. Zu, and P. Wang, Microstructural development and its effects on mechanical properties of Al/Cu laminated composite, Trans. Nonferrous Met. Soc. China, 25(2015), No. 1, p. 36. doi: 10.1016/S1003-6326(15)63576-2
      [12]
      W.M. Jiang, F. Guan, G.Y. Li, H.X. Jiang, J.W. Zhu, and Z.T. Fan, Processing of Al/Cu bimetal via a novel compound casting method, Mater. Manuf. Processes, 34(2019), No. 9, p. 1016. doi: 10.1080/10426914.2019.1615084
      [13]
      F. Guan, W.M. Jiang, G.Y. Li, H.X. Jiang, J.W. Zhu, and Z.T. Fan, Interfacial bonding mechanism and pouring temperature effect on Al/Cu bimetal prepared by a novel compound casting process, Mater. Res. Express, 6(2019), No. 9, art. No. 096529. doi: 10.1088/2053-1591/ab2d8f
      [14]
      S.Y. Liu, A.Q. Wang, H.W. Tian, and J.P. Xie, The synergetic tensile deformation behavior of Cu/Al laminated composites prepared by twin-roll casting technology, Mater. Res. Express, 6(2018), No. 1, art. No. 016530. doi: 10.1088/2053-1591/aae630
      [15]
      W.K. Lu, J.P. Xie, A.Q. Wang, J.W. Li, and Y.D. Zhang, Effects of annealing temperature on interfacial microstructure and mechanical properties of Cu/Al roll-casted composite plate, Mater. Mech. Eng., 38(2014), No. 3, p. 14.
      [16]
      J. Wang, Y. Lei, X.H. Liu, G.L. Xie, Y.Q. Jiang, and S. Zhang, Microstructure and properties of Cu–Al-laminated composites fabricated via formation of a horizontal casting composite, Chin. J. Eng., 42(2020), No. 2, p. 216.
      [17]
      Y.J. Su, X.H. Liu, H.Y. Huang, C.J. Wu, X.F. Liu, and J.X. Xie, Effects of processing parameters on the fabrication of copper cladding aluminum rods by horizontal core-filling continuous casting, Metall. Mater. Trans. B, 42(2011), No. 1, p. 104. doi: 10.1007/s11663-010-9449-2
      [18]
      Y.F. Wu and X.H. Liu, FE simulation of rolling for copper cladding aluminum with rectangle section, J. Plast. Eng., 22(2015), No. 6, p. 91.
      [19]
      J.Y. Li, J.T. Luo, J.L. Shen, and Y.F. Gu, Roll deformation process simulation and rolling force calculation formula of copper clad aluminum composites, Acta Mater. Compos. Sin., 31(2014), No. 6, p. 1551.
      [20]
      Y.B. Luo, X.Y. Dai, and J. Zhang, Numerical simulation and experimental investigation on rolling deformation strain of copper cladding aluminum flat wires, Mater. Rev., 28(2014), No. 8, p. 157.
      [21]
      S.Y. Liu, A.Q. Wang, T.T. Liang, and J.P. Xie, Hot deformation behavior of Cu/Al laminated composites under interface constraint effect, Mater. Res. Express, 5(2018), No. 6, art. No. 066531. doi: 10.1088/2053-1591/aacaeb
      [22]
      W.Y. Wang, Q.L. Pan, Y.W. Sun, X.D. Wang, A.D. Li, and W.B. Song, Study on hot compressive deformation behaviors and corresponding industrial extrusion of as-homogenized Al–7.82Zn–1.96Mg–2.35Cu–0.11Zr alloy, J. Mater. Sci., 53(2018), No. 16, p. 11728. doi: 10.1007/s10853-018-2388-z
      [23]
      C. Zener and J.H. Hollomon, Problems in non-elastic deformation of metals, J. Appl. Phys., 17(1946), No. 2, p. 69. doi: 10.1063/1.1707696
      [24]
      B. Zhang, L.L. Zhu, K.S. Wang, W. Wang, and Y.X. Hao, High temperature plastic deformation behavior and constitutive equation of pure nickel, Chin. J. Rare Met., 39(2015), No. 5, p. 406.

    Catalog


    • /

      返回文章
      返回