Cite this article as: |
Hua Han, An Liu, Caili Wang, Runquan Yang, Shuai Li, and Huaifa Wang, Flotation kinetics performance of different coal size fractions with nanobubbles, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1502-1510. https://doi.org/10.1007/s12613-021-2280-8 |
王怀法 E-mail: wanghuaifa@tyut.edu.cn
[1] |
H. Gholami, B. Rezai, A. Hassanzadeh, A. Mehdilo, and M. Yarahmadi, Effect of microwave pretreatment on grinding and flotation kinetics of copper complex ore, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1887. doi: 10.1007/s12613-020-2106-0
|
[2] |
G. Cheng, X.H. Gui, J.T. Liu, H.X. Xu, Y.T. Wang, Q.D. Zhang, and C.A. Song, Study on size and density distribution in fine coal flotation, Int. J. Coal Prep. Util., 33(2013), No. 3, p. 99. doi: 10.1080/19392699.2013.763232
|
[3] |
J. Sokolović and S. Miskovic, The effect of particle size on coal flotation kinetics: A review, Physicochem. Probl. Miner. Process., 54(2018), No. 4, p. 1172. doi: 10.5277/PPMP18155
|
[4] |
C. Ni, G.Y. Xie, M.G. Jin, Y.L. Peng, and W.C. Xia, The difference in flotation kinetics of various size fractions of bituminous coal between rougher and cleaner flotation processes, Powder Technol., 292(2016), p. 210. doi: 10.1016/j.powtec.2016.02.004
|
[5] |
C. Ni, X.N. Bu, W.C. Xia, Y.L. Peng, and G.Y. Xie, Effect of slimes on the flotation recovery and kinetics of coal particles, Fuel, 220(2018), p. 159. doi: 10.1016/j.fuel.2018.02.003
|
[6] |
E.C. Çilek, Estimation of flotation kinetic parameters by considering interactions of the operating variables, Miner. Eng., 17(2004), No. 1, p. 81. doi: 10.1016/j.mineng.2003.10.008
|
[7] |
S. Ata, Phenomena in the froth phase of flotation—A review, Int. J. Miner. Process., 102-103(2012), p. 1. doi: 10.1016/j.minpro.2011.09.008
|
[8] |
D. Tao, Role of bubble size in flotation of coarse and fine particles—A review, Sep. Sci. Technol., 39(2005), No. 4, p. 741. doi: 10.1081/SS-120028444
|
[9] |
O. Bayat, M. Ucurum, and C. Poole, Effects of size distribution on flotation kinetics of Turkish sphalerite, Miner. Process. Extr. Metall., 113(2004), No. 1, p. 53. doi: 10.1179/037195504225004643
|
[10] |
A.P. Chaves and A.S. Ruiz, Considerations on the kinetics of froth flotation of ultrafine coal contained in tailings, Int. J. Coal Prep. Util., 29(2009), No. 6, p. 289. doi: 10.1080/19392690903558371
|
[11] |
G.H. Ai, X.L. Yang, and X.B. Li, Flotation characteristics and flotation kinetics of fine wolframite, Powder Technol., 305(2017), p. 377. doi: 10.1016/j.powtec.2016.09.068
|
[12] |
E. Abkhoshk, M. Kor, and B. Rezai, A study on the effect of particle size on coal flotation kinetics using fuzzy logic, Expert Syst. Appl., 37(2010), No. 7, p. 5201. doi: 10.1016/j.eswa.2009.12.071
|
[13] |
Z.A. Zhou, Z.H. Xu, J.A. Finch, J.H. Masliyah, and R.S. Chow, On the role of cavitation in particle collection in flotation—A critical review. II, Miner. Eng., 22(2009), No. 5, p. 419. doi: 10.1016/j.mineng.2008.12.010
|
[14] |
M.M. Fan, D. Tao, R. Honaker, and Z.F. Luo, Nanobubble generation and its application in froth flotation (part I): Nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions, Min. Sci. Technol. China, 20(2010), No. 1, p. 1. doi: 10.1016/S1674-5264(09)60154-X
|
[15] |
W.G. Zhou, L.M. Ou, Q. Shi, Q.M. Feng, and H. Chen, Different flotation performance of ultrafine scheelite under two hydrodynamic cavitation modes, Minerals, 8(2018), No. 7, art. No. 264. doi: 10.3390/min8070264
|
[16] |
W.G. Zhou, C.N. Wu, H.Z. Lv, B.L. Zhao, K. Liu, and L.M. Ou, Nanobubbles heterogeneous nucleation induced by temperature rise and its influence on minerals flotation, Appl. Surf. Sci., 508(2020), art. No. 145282. doi: 10.1016/j.apsusc.2020.145282
|
[17] |
W.G. Zhou, J.J. Niu, W. Xiao, and L.M. Ou, Adsorption of bulk nanobubbles on the chemically surface-modified muscovite minerals, Ultrason. Sonochem, 51(2019), p. 31. doi: 10.1016/j.ultsonch.2018.10.021
|
[18] |
S. Nazari, S.Z. Shafaei, M. Gharabaghi, R. Ahmadi, B. Shahbazi, and M.M. Fan, Effects of nanobubble and hydrodynamic parameters on coarse quartz flotation, Int. J. Min. Sci. Technol., 29(2019), No. 2, p. 289. doi: 10.1016/j.ijmst.2018.08.011
|
[19] |
H. Oliveira, A. Azevedo, and J. Rubio, Nanobubbles generation in a high-rate hydrodynamic cavitation tube, Miner. Eng., 116(2018), p. 32. doi: 10.1016/j.mineng.2017.10.020
|
[20] |
M.M. Zhang and J.R.T. Seddon, Nanobubble-nanoparticle interactions in bulk solutions, Langmuir, 32(2016), No. 43, p. 11280. doi: 10.1021/acs.langmuir.6b02419
|
[21] |
A. Azevedo, H. Oliveira, and J. Rubio, Bulk nanobubbles in the mineral and environmental areas: Updating research and applications, Adv. Colloid Interfaces Sci., 271(2019), art. No. 101992. doi: 10.1016/j.cis.2019.101992
|
[22] |
Y.W. Xing, X.H. Gui, and Y.J. Cao, The hydrophobic force for bubble-particle attachment in flotation—A brief review, Phys. Chem. Chem. Phys., 19(2017), No. 36, p. 24421. doi: 10.1039/C7CP03856A
|
[23] |
M.M. Fan, D. Tao, Y.M. Zhao, and R. Honaker, Effect of nanobubbles on the flotation of different sizes of coal particle, Min. Metall. Proc., 30(2013), No. 3, p. 157. doi: 10.1007/BF03402262
|
[24] |
F.F. Peng and X. Yu, Pico-nano bubble column flotation using static mixer-venturi tube for Pittsburgh No. 8 coal seam, Int. J. Min. Sci. Technol., 25(2015), No. 3, p. 347. doi: 10.1016/j.ijmst.2015.03.004
|
[25] |
S. Nazari, S.Z. Shafaei, B. Shahbazi, and S.C. Chelgani, Study relationships between flotation variables and recovery of coarse particles in the absence and presence of nanobubble, Colloid. Surface A., 559(2018), p. 284. doi: 10.1016/j.colsurfa.2018.09.066
|
[26] |
X.H. Zhang, D.Y.C. Chan, D.Y. Wang, and N. Maeda, Stability of interfacial nanobubbles, Langmuir, 29(2013), No. 4, p. 1017. doi: 10.1021/la303837c
|
[27] |
G.H. Chang, Y.W. Xing, F.F. Zhang, Z.L. Yang, X.K. Liu, and X.H. Gui, Effect of nanobubbles on the flotation performance of oxidized coal, ACS Omega, 5(2020), No. 32, p. 20283. doi: 10.1021/acsomega.0c02154
|
[28] |
X.W. Deng, B. Lv, G. Cheng, and Y. Lu, Mechanism of micro/nano-bubble formation and cavitation effect on bubbles size distribution in flotation, Physicochem. Probl. Miner. Process., 56(2020), No. 3, p. 504. doi: 10.37190/ppmp/119883
|
[29] |
C.W. Li, M. Xu, Y.W. Xing, H.J. Zhang, and U.A. Peuker, Efficient separation of fine coal assisted by surface nanobubbles, Sep. Purif. Technol., 249(2020), art. No. 117163. doi: 10.1016/j.seppur.2020.117163
|
[30] |
H. Ebrahimi, M. Karamoozian, and S.F. Saghravani, Interaction of applying stable micro-nano bubbles and ultrasonic irradiation in coal flotation, Int. J. Coal Prep. Util., 42(2022), p. 1548. doi: 10.1080/19392699.2020.1732947
|
[31] |
Y.F. Wang, Z.C. Pan, X.M. Luo, W.Q. Qin, and F. Jiao, Effect of nanobubbles on adsorption of sodium oleate on calcite surface, Miner. Eng., 133(2019), p. 127. doi: 10.1016/j.mineng.2019.01.015
|
[32] |
W.G. Zhou, H. Chen, L.M. Ou, and Q. Shi, Aggregation of ultra-fine scheelite particles induced by hydrodynamic cavitation, Int. J. Miner. Process., 157(2016), p. 236. doi: 10.1016/j.minpro.2016.11.003
|