Cite this article as: |
Yan Ma, Rui Zheng, Ziyuan Gao, Ulrich Krupp, Hai-wen Luo, Wenwen Song, and Wolfgang Bleck, Multiphase-field simulation of austenite reversion in medium-Mn steels, Int. J. Miner. Metall. Mater., 28(2021), No. 5, pp. 847-853. https://doi.org/10.1007/s12613-021-2282-6 |
Medium-Mn steels have attracted immense attention for automotive applications owing to their outstanding combination of high strength and superior ductility. This steel class is generally characterized by an ultrafine-grained duplex microstructure consisting of ferrite and a large amount of austenite. Such a unique microstructure is processed by intercritical annealing, where austenite reversion occurs in a fine martensitic matrix. In the present study, austenite reversion in a medium-Mn alloy was simulated by the multiphase-field approach using the commercial software MICRESS® coupled with the thermodynamic database TCFE8 and the kinetic database MOBFE2. In particular, a faceted anisotropy model was incorporated to replicate the lamellar morphology of reversed austenite. The simulated microstructural morphology and phase transformation kinetics (indicated by the amount of phase) concurred well with experimental observations by scanning electron microscopy and in situ synchrotron high-energy X-ray diffraction, respectively.
[1] |
Y.K. Lee and J. Han, Current opinion in medium manganese steel, Mater. Sci. Technol., 31(2015), No. 7, p. 843. doi: 10.1179/1743284714Y.0000000722
|
[2] |
Y. Ma, Medium-manganese steels processed by austenite-reverted-transformation annealing for automotive applications, Mater. Sci. Technol., 33(2017), No. 15, p. 1713. doi: 10.1080/02670836.2017.1312208
|
[3] |
B. Hu, H.W. Luo, F. Yang, and H. Dong, Recent progress in medium-Mn steels made with new designing strategies, a review, J. Mater. Sci. Technol., 33(2017), No. 12, p. 1457. doi: 10.1016/j.jmst.2017.06.017
|
[4] |
D.K. Matlock and J.G. Speer, Processing opportunities for new advanced high-strength sheet steels, Mater. Manuf. Processes, 25(2010), No. 1-3, p. 7. doi: 10.1080/10426910903158272
|
[5] |
W. Bleck, F. Brühl, Y. Ma, and C. Sasse, Materials and processes for the third-generation advanced high-strength steels, BHM Berg- Huttenmann. Monatsh., 164(2019), No. 11, p. 466. doi: 10.1007/s00501-019-00904-y
|
[6] |
L. Liu, B.B. He, and M.X. Huang, The role of transformation-induced plasticity in the development of advanced high strength steels, Adv. Eng. Mater., 20(2018), No. 6, art. No. 1701083. doi: 10.1002/adem.201701083
|
[7] |
R.L. Miller, Ultrafine-grained microstructures and mechanical properties of alloy-steels, Metall. Mater. Trans. B, 3(1972), No. 4, p. 905. doi: 10.1007/BF02647665
|
[8] |
S.W. Lee and B.C. De Cooman, Effect of the intercritical annealing temperature on the mechanical properties of 10 pct Mn multi-phase steel, Metall. Mater. Trans. A, 45(2014), No. 11, p. 5009. doi: 10.1007/s11661-014-2449-0
|
[9] |
P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock, Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel, Metall. Mater. Trans. A, 42(2011), No. 12, p. 3691. doi: 10.1007/s11661-011-0687-y
|
[10] |
K. Steineder, D. Krizan, R. Schneider, C. Beal, and C. Sommitsch, On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels, Acta Mater., 139(2017), p. 39. doi: 10.1016/j.actamat.2017.07.056
|
[11] |
Y. Ma, W.W. Song, S.X. Zhou, A. Schwedt, and W. Bleck, Influence of intercritical annealing temperature on microstructure and mechanical properties of a cold-rolled medium-Mn steel, Metals, 8(2018), No. 5, p. 357. doi: 10.3390/met8050357
|
[12] |
H.W. Luo, J. Shi, C. Wang, W.Q. Cao, X.J. Sun, and H. Dong, Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel, Acta Mater., 59(2011), No. 10, p. 4002. doi: 10.1016/j.actamat.2011.03.025
|
[13] |
C. Wang, J. Shi, C.Y. Wang, W.J. Hui, M.Q. Wang, H. Dong, and W.Q. Cao, Development of ultrafine lamellar ferrite and austenite duplex structure in 0.2C5Mn steel during ART-annealing, ISIJ Int., 51(2011), No. 4, p. 651. doi: 10.2355/isijinternational.51.651
|
[14] |
J. Han and Y.K. Lee, The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels, Acta Mater., 67(2014), p. 354. doi: 10.1016/j.actamat.2013.12.038
|
[15] |
T. Furukawa, H. Huang, and O. Matsumura, Effects of carbon content on mechanical properties of 5%Mn steels exhibiting transformation induced plasticity, Mater. Sci. Technol., 10(1994), No. 11, p. 964. doi: 10.1179/mst.1994.10.11.964
|
[16] |
Y. Ma, B.H. Sun, A. Schökel, W.W. Song, D. Ponge, D. Raabe, and W. Bleck, Phase boundary segregation-induced strengthening and discontinuous yielding in ultrafine-grained duplex medium-Mn steels, Acta Mater., 200(2020), p. 389. doi: 10.1016/j.actamat.2020.09.007
|
[17] |
R. Schneider, K. Steineder, D. Krizan, and C. Sommitsch, Effect of the heat treatment on the microstructure and mechanical properties of medium-Mn-steels, Mater. Sci. Technol., 35(2019), No. 17, p. 2045. doi: 10.1080/02670836.2018.1548957
|
[18] |
J. Han, S.J. Lee, C.Y. Lee, S. Lee, S.Y. Jo, and Y.K. Lee, The size effect of initial martensite constituents on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05C steel, Mater. Sci. Eng. A, 633(2015), p. 9. doi: 10.1016/j.msea.2015.02.075
|
[19] |
N. Moelans, B. Blanpain, and P. Wollants, An introduction to phase-field modeling of microstructure evolution, Calphad, 32(2008), No. 2, p. 268. doi: 10.1016/j.calphad.2007.11.003
|
[20] |
I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, and J. L.L. Rezende, A phase field concept for multiphase systems, Physica D, 94(1996), No. 3, p. 135. doi: 10.1016/0167-2789(95)00298-7
|
[21] |
B. Böttger, M. Apel, J. Eiken, P. Schaffnit, and I. Steinbach, Phase-field simulation of solidification and solid-state transformations in multicomponent steels, Steel Res. Int., 79(2008), No. 8, p. 608. doi: 10.1002/srin.200806173
|
[22] |
M. Militzer, Phase field modeling of microstructure evolution in steels, Curr. Opin. Solid State Mater. Sci., 15(2011), No. 3, p. 106. doi: 10.1016/j.cossms.2010.10.001
|
[23] |
J. Rudnizki, B. Böttger, U. Prahl, and W. Bleck, Phase-field modeling of austenite formation from a ferrite plus pearlite microstructure during annealing of cold-rolled dual-phase steel, Metall. Mater. Trans. A, 42(2011), No. 8, p. 2516. doi: 10.1007/s11661-011-0626-y
|
[24] |
M. Toloui and M. Militzer, Phase field modeling of the simultaneous formation of bainite and ferrite in TRIP steel, Acta Mater., 144(2018), p. 786. doi: 10.1016/j.actamat.2017.11.047
|
[25] |
W.W. Song, U. Prahl, Y. Ma, and W. Bleck, Multiphase-field simulation of cementite precipitation during isothermal lower bainitic transformation, Steel Res. Int., 89(2018), No. 8, art. No. 1800028. doi: 10.1002/srin.201800028
|
[26] |
O. Dmitrieva, D. Ponge, G. Inden, J. Millán, P. Choi, J. Sietsma, and D. Raabe, Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation, Acta Mater., 59(2011), No. 1, p. 364. doi: 10.1016/j.actamat.2010.09.042
|
[27] |
H. Kamoutsi, E. Gioti, G.N. Haidemenopoulos, Z. Cai, and H. Ding, Kinetics of solute partitioning during intercritical annealing of a medium-Mn steel, Metall. Mater. Trans. A, 46(2015), No. 11, p. 4841. doi: 10.1007/s11661-015-3118-7
|
[28] |
J.J. Mueller, D.K. Matlock, J.G. Speer, and E. De Moor, Accelerated ferrite-to-austenite transformation during intercritical annealing of medium-manganese steels due to cold-rolling, Metals, 9(2019), No. 9, art. No. 926. doi: 10.3390/met9090926
|
[29] |
I. Steinbach, F. Pezzolla, and R. Prieler, Grain selection in faceted crystal growth using the phase field theory, [in] Proceedings of the Modeling of Casting, Welding and Advanced Solidification Processes, London, 1995, p. 695.
|
[30] |
Y. Ma, Processes, Microstructure, and Mechanical Properties of Cold-Rolled Medium-Mn Steel, Verlagshaus Mainz GmbH Aachen, Aachen, 2020, p. 33.
|
[31] |
A.C. Dippel, H.P. Liermann, J.T. Delitz, P. Walter, H. Schulte-Schrepping, O.H. Seeck, and H. Franz, Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction, J. Synchrotron Radiat., 22(2015), No. 3, p. 675. doi: 10.1107/S1600577515002222
|
[32] |
A. Dutta, D. Ponge, S. Sandlöbes, and D. Raabe, Strain partitioning and strain localization in medium manganese steels measured by in situ microscopic digital image correlation, Materialia, 5(2019), art. No. 100252. doi: 10.1016/j.mtla.2019.100252
|
[33] |
A.P. Hammersley, FIT2D: A multi-purpose data reduction, analysis and visualization program, J. Appl. Crystallogr., 49(2016), No. 2, p. 646. doi: 10.1107/S1600576716000455
|
[34] |
L. Lutterotti, Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction, Nucl. Instrum. Methods Phys. Res., Sect. B, 268(2010), No. 3-4, p. 334. doi: 10.1016/j.nimb.2009.09.053
|
[35] |
Y. Ma, W.W. Song, and W. Bleck, Investigation of the microstructure evolution in a Fe–17Mn–1.5Al–0.3C steel via in situ synchrotron X-ray diffraction during a tensile test, Materials, 10(2017), No. 10, art. No. 1129. doi: 10.3390/ma10101129
|