留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 8
Aug.  2021

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2153
  • HTML全文浏览量:  876
  • PDF下载量:  125
  • 被引次数: 0
Te Xu, Guang Song, Yang Yang, Pei-xin Ge, and Li-xin Tang, Visualization and simulation of steel metallurgy processes, Int. J. Miner. Metall. Mater., 28(2021), No. 8, pp. 1387-1396. https://doi.org/10.1007/s12613-021-2283-5
Cite this article as:
Te Xu, Guang Song, Yang Yang, Pei-xin Ge, and Li-xin Tang, Visualization and simulation of steel metallurgy processes, Int. J. Miner. Metall. Mater., 28(2021), No. 8, pp. 1387-1396. https://doi.org/10.1007/s12613-021-2283-5
引用本文 PDF XML SpringerLink
研究论文

钢铁冶金过程的可视化与仿真

  • Research Article

    Visualization and simulation of steel metallurgy processes

    + Author Affiliations
    • Steel production involves the transfer and transformation of material and energy at different levels, structures, and scales, and this process incurs substantial information in the material and energy dimensions. Given the black-box feature of iron and steel production processes, process visualization plays an important role and inevitably benefits parameter correction, technical support decision-making, personnel training, and other aspects of the steel metallurgy industry. The technological characteristics of the entire process in the steel industry were analyzed in this study, a visualization technology route based on virtual reality (VR) was built, and the important components of visual simulation system for steel industry and the important technical points needed to realize the system were proposed. On the foundation, a visual simulation model for the process scheduling of the iron and steel enterprise raw materials’ field, slab, and hot rolling processes was built, and a visualization simulation platform of the iron and steel metallurgy plant-wide process, including ironmaking, steelmaking, hot rolling, and cold rolling, was developed. Lastly, the effectiveness of platform was illustrated by practical application.

    • loading
    • [1]
      R.Y. Yin, Case study, [in] Theory and Methods of Metallurgical Process Integration, 1st ed., Academic Press, 2016, p. 179.
      [2]
      R.Y. Yin, A discussion on “smart” steel plant—View from physical system side, Iron Steel, 52(2017), No. 6, p. 1. doi: 10.13228/j.boyuan.issn0449-749x.20170107
      [3]
      L.X. Tang, F. Li, and Z.L. Chen, Integrated scheduling of production and two-stage delivery of make-to-order products: Offline and online algorithms, Inf. J. Comput., 31(2019), No. 3, p. 493. doi: 10.1287/ijoc.2018.0842
      [4]
      L.X. Tang and Y. Meng, Data analytics and optimization for smart industry, Front. Eng. Manage., 8(2021), No. 2, p. 157. doi: 10.1007/s42524-020-0126-0
      [5]
      M. Chandramouli, M. Zahraee, and C. Winer, A fun-learning approach to programming: An adaptive virtual reality (VR) platform to teach programming to engineering students, [in] IEEE International Conference on Electro/Information Technology, Milwaukee, 2014, p. 581.
      [6]
      J.H. Seo, B.M. Smith, M. Cook, E. Malone, M. Pine, S. Leal, Z.K. Bai, and J. Suh, Anatomy builder VR: Applying a constructive learning method in the virtual reality canine skeletal system, [in] International Conference on Applied Human Factors and Ergonomics, Springer, Cham, 2018, p. 245.
      [7]
      S.M. Rakshit, S. Banerjee, M. Hempel, and H. Sharif, Fusion of VR and teleoperation for innovative near-presence laboratory experience in engineering education, [in] 2017 IEEE International Conference on Electro Information Technology (EIT), Lincoln, 2017, p. 376.
      [8]
      C.H. Lin and P.H. Hsu, Integrating procedural modelling process and immersive VR environment for architectural design education, MATEC Web Conf., 104(2017), art. No. 03007. doi: 10.1051/matecconf/201710403007
      [9]
      F. Pittarello, Experimenting with PlayVR, a virtual reality experience for the world of theater, [in] Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter, Cagliari, 2017, p. 1.
      [10]
      P.V.D.F. Paiva, L.S. Machado, and A.M.G. Valença, A virtual environment for training and assessment of surgical teams, [in] 2013 XV Symposium on Virtual and Augmented Reality, Cuiaba, 2013, p. 17.
      [11]
      N. Chin, A. Gupte, J. Nguyen, S. Sukhin, G. Wang, and J. Mirizio, Using virtual reality for an immersive experience in the water cycle, [in] 2017 IEEE MIT Undergraduate Research Technology Conference (URTC), Cambridge, 2017, p. 1.
      [12]
      T. Miki, T. Iwai, K. Kotani, J. Dang, H. Sawada, and M. Miyake, Development of a virtual reality training system for endoscope-assisted submandibular gland removal, J. Cranio-Maxillofac. Surg., 44(2016), No. 11, p. 1800. doi: 10.1016/j.jcms.2016.08.018
      [13]
      C. Copeland and S. Street, Tuyere failures—cause and effect, [in] Iron & Steel Technology Conference, Indianapolis, 2011, p. 605.
      [14]
      C.Q. Jian, M.A. Lorra, D. McCorkle, and K.M. Bryden, Applications of virtual engineering in combustion equipment development and engineering, [in] ASME International Mechanical Engineering Congress and Exposition, Chicago, Illinois, 2007, P. 1159.
      [15]
      D. Fu, B. Wu, J. Moreland, G. Chen, R. Shan and C.Q. Zhou, Virtual reality visualization of CFD simulation for iron/steelmaking processes, [in] Proceedings of 2010 14th International Heat Transfer Conference, Washington, 2011, p. 761.
      [16]
      T.J. Gundert, P. Hayden, R.Q. Migrino, and J.F. LaDisa, Visualization of CFD results in a virtual reality environment, [in] Proceedings of ASME 2009 Summer Bioengineering Conference, Lake Tahoe, California, 2013, p. 741.
      [17]
      G.X. Huang and K.M. Bryden, Introducing virtual engineering technology into interactive design process with high-fidelity models, [in] Proceedings of the Winter Simulation Conference, Orlando, 2005, p. 1958.
      [18]
      G. Burdea and P. Coiffet, Virtual Reality Technology, 2nd ed., John Wiley & Sons, New York, 2003, p. 3.
      [19]
      P. Ala-Siuru, J. Takalo, J. Ensomaa, and J. Plomp, A hierarchical virtual environment for a machine fault diagnostic application, Future Gener. Comput. Syst., 14(1998), No. 3-4, p. 179. doi: 10.1016/S0167-739X(98)00020-X
      [20]
      World Steel Association, Steeluniversity [2020-10-09]. https://steeluniversity.org
      [21]
      C.Q. Zhou, Application of simulation and visualization technologies in steel manufacturing, [in] The 5th Baosteel Academic Annual Conference, Shanghai, 2014, p. 1.
      [22]
      J.L.M. Lastra, E.L. Torres, and A.W. Colombo, A 3D visualization and simulation framework for intelligent physical agents, [in] Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2005, p. 23.
      [23]
      J. Moreland, K. Toth, Y.Q. Fang, M. Block, G. Page, S. Crites, and C.Q. Zhou, Interactive simulators for steel industry safety training, Steel Res. Int., 90(2019), No. 4, art. No. 1800513. doi: 10.1002/srin.201800513
      [24]
      P.Y. Hao, Y.F. Feng, W.J. Ge, and G.F. Zhao, Animation simulation of visualization management system in the iron and steel enterprises: The design and its implementation, J. Softw., 9(2014), No. 3, p. 576.
      [25]
      J. Zhang and X.M. Song, Simulation and decision-making system in burden distribution of blast furnace, J. Northeast. Univ. Nat. Sci., 36(2015), No. 10, p. 1398. doi: 10.3969/j.issn.1005-3026.2015.10.007
      [26]
      Y. Yuan and L.X. Tang, Novel time-space network flow formulation and approximate dynamic programming approach for the crane scheduling in a coil warehouse, Eur. J. Oper. Res., 262(2017), No. 2, p. 424. doi: 10.1016/j.ejor.2017.03.007
      [27]
      D.F. Sun, L.X. Tang, and R. Baldacci, A Benders decomposition-based framework for solving quay crane scheduling problems, Eur. J. Oper. Res., 273(2019), No. 2, p. 504. doi: 10.1016/j.ejor.2018.08.009
      [28]
      J.G. Cao, J. Jiang, Q.F. Zhao, A.R. He, C.F. Li and X.D. Sun, Wide and heavy plate crown control based on data mining, J. Cent. South Univ. Sci. Technol., 50(2019), No. 11, p. 2743. doi: 10.11817/j.issn.1672-7207.2019.11.013
      [29]
      Y. Li, J. Wang and Y.J. Zhang, Quality analysis method for hot strip based on data mining, Chin. J. Eng., 37(2015), Suppl. 1, p. 56. doi: 10.13374/j.issn2095-9389.2015.s1.010
      [30]
      J.G. Cao, X.T. Chai, Y.L. Li, N. Kong, S.H. Jia, and W. Zeng, Integrated design of roll contours for strip edge drop and crown control in tandem cold rolling mills, J. Mater. Process. Technol., 252(2018), p. 432. doi: 10.1016/j.jmatprotec.2017.09.038
      [31]
      W.Z. Liu, An application case of intelligent manufacturing brings enlightenment, Metall. Ind. Autom., 43(2019), No. 1, p. 20. doi: 10.3969/j.issn.1000-7059.2019.01.004

    Catalog


    • /

      返回文章
      返回