留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 11
Nov.  2022

图(14)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1032
  • HTML全文浏览量:  420
  • PDF下载量:  83
  • 被引次数: 0
Shuangyu Cai, Keke Lu, Xinnan Li, Lei Wen, Feifei Huang, and Ying Jin, Quantitative micro-electrochemical study of duplex stainless steel 2205 in 3.5wt% NaCl solution, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2053-2063. https://doi.org/10.1007/s12613-021-2291-5
Cite this article as:
Shuangyu Cai, Keke Lu, Xinnan Li, Lei Wen, Feifei Huang, and Ying Jin, Quantitative micro-electrochemical study of duplex stainless steel 2205 in 3.5wt% NaCl solution, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2053-2063. https://doi.org/10.1007/s12613-021-2291-5
引用本文 PDF XML SpringerLink
研究论文

2205双相不锈钢在3.5wt% NaCl溶液中的微区电化学研究

  • 通讯作者:

    金莹    E-mail: yjin@ustb.edu.cn

文章亮点

  • (1)建立了电化学双电层界面电位脉冲模型,深入论证分析了优化的恒电量扰动法这一暂态测试方法脉冲时间的合理性。
  • (2)定量化表征了2205双相不锈钢在ϕ10 μm微区内不同比例相含量下的电化学特性。
  • (3)为获取高极化电阻体系,尤其是微区高极化电阻体系低频阻抗数据,提供了一种建设性思路。
  • 双相不锈钢(DSSs)在服役期间会遭受各种局部腐蚀,如点蚀、选择性溶解、缝隙腐蚀等,定量化分析和掌握DSSs在微米甚至更小尺度上的微区电化学腐蚀行为及其相关机理具有重要的研究价值。本文采用扫描开尔文探针力显微镜(SKPFM)和能量色散光谱(EDS)测量来揭示DSS 2205微区奥氏体相和铁素体相的差异;采用传统的电化学阻抗谱(EIS)和动电位极化(PDP)方法分别在ϕ40和ϕ10 μm孔径的微孔上对不同相比例的DSS 2205进行了微区电化学表征。实验结果表明传统的电化学方法EIS和PDP只能用于DSS 2205的定性或半定量微区电化学表征。进一步地,我们采用实验室设计发展的优化的恒电量扰动法对DSS 2205进行微区定量化电化学表征。通过建立电化学界面电位脉冲电路,深入分析了该套暂态测试方法的适用条件。在ϕ10 μm的微孔上分别对不同相比例的DSS 2205进行了一系列的微区恒电量暂态测试,结果表明:随着奥氏体相比例的增加,微区体系的极化电阻呈线性增加。
  • Research Article

    Quantitative micro-electrochemical study of duplex stainless steel 2205 in 3.5wt% NaCl solution

    + Author Affiliations
    • Duplex stainless steels (DSSs) are suffering from various localized corrosion attacks such as pitting, selective dissolution, crevice corrosion during their service period. It is of great value to quantitatively analyze and grasp the micro-electrochemical corrosion behavior and related mechanism for DSSs on the micrometer or even smaller scales. In this work, scanning Kelvin probe force microscopy (SKPFM) and energy dispersive spectroscopy (EDS) measurements were performed to reveal the difference between the austenite phase and ferrite phase in microregion of DSS 2205. Then traditional electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) tests were employed for micro-electrochemical characterization of DSS 2205 with different proportion phases in ϕ40 and ϕ10 μm micro holes. Both of them can only be utilized for qualitative or semi-quantitative micro-electrochemical characterization of DSS 2205. Coulostatic perturbation method was employed for quantitative micro-electrochemical characterization of DSS 2205. What is more, the applicable conditions of coulostatic perturbation were analyzed in depth by establishing a detailed electrochemical interface circuit. A series of microregion coulostatic perturbations for DSS 2205 with different proportion phases in ϕ10 μm micro holes showed that as the austenite proportion increases, the corresponding polarization resistance of microregion increases linearly.
    • loading
    • [1]
      J. Verma and R.V. Taiwade, Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments—A review, J. Manuf. Process., 25(2017), p. 134. doi: 10.1016/j.jmapro.2016.11.003
      [2]
      J.T. Yuan, H.H. Zhang, A.Q. Fu, C.X. Yin, M. Zhu, N.X. Lv, X.Q. Xu, and J. Miao, Insights into the corrosion perforation of UNS S32205 duplex stainless steel weld in gas transportation pipelines, Mater. Corros., 68(2017), No. 8, p. 858. doi: 10.1002/maco.201609341
      [3]
      S. Pamuk and K. Sojiphan, Effects of argon-nitrogen backing gas ratios on microstructure and corrosion resistance of duplex stainless steel pipe ASTM A790 welds by gas tungsten arc welding process, Mater. Today: Proc., 5(2018), No. 3, p. 9512. doi: 10.1016/j.matpr.2017.10.132
      [4]
      S.F. Yang, Y. Wen, P. Yi, K. Xiao, and C.F. Dong, Effects of chitosan inhibitor on the electrochemical corrosion behavior of 2205 duplex stainless steel, Int. J. Miner. Metall. Mater., 24(2017), No. 11, p. 1260. doi: 10.1007/s12613-017-1518-y
      [5]
      P. Nithin Raj, P.K. Navaneethkrishnan, K. Sekar, and M.A. Joseph, Comparative study of mechanical, corrosion and erosion-corrosion properties of cast hyper-duplex and super-duplex stainless steels, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 954. doi: 10.1007/s12613-020-1984-5
      [6]
      C.O.A. Olsson and D. Landolt, Passive films on stainless steels—chemistry, structure and growth, Electrochim. Acta, 48(2003), No. 9, p. 1093. doi: 10.1016/S0013-4686(02)00841-1
      [7]
      H.H. Strehblow, Passivity of metals studied by surface analytical methods, a review, Electrochim. Acta, 212(2016), p. 630. doi: 10.1016/j.electacta.2016.06.170
      [8]
      X.Q. Cheng, Y. Wang, C.F. Dong, and X.G. Li, The beneficial galvanic effect of the constituent phases in 2205 duplex stainless steel on the passive films formed in a 3.5% NaCl solution, Corros. Sci., 134(2018), p. 122. doi: 10.1016/j.corsci.2018.02.033
      [9]
      K.B. Tayyab, A. Farooq, A.A. Alvi, A.B. Nadeem, and K.M. Deen, Corrosion behavior of cold-rolled and post heat-treated 316L stainless steel in 0.9wt% NaCl solution, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 440. doi: 10.1007/s12613-020-2054-8
      [10]
      R.A. Perren, T.A. Suter, P.J. Uggowitzer, L. Weber, R. Magdowski, H. Böhni, and M.O. Speidel, Corrosion resistance of super duplex stainless steels in chloride ion containing environments: Investigations by means of a new microelectrochemical method: I. Precipitation-free states, Corros. Sci., 43(2001), No. 4, p. 707. doi: 10.1016/S0010-938X(00)00087-1
      [11]
      M. Femenia, J. Pan, C. Leygraf, and P. Luukkonen, In situ study of selective dissolution of duplex stainless steel 2205 by electrochemical scanning tunnelling microscopy, Corros. Sci., 43(2001), No. 10, p. 1939. doi: 10.1016/S0010-938X(00)00180-3
      [12]
      M. Femenia, J. Pan, and C. Leygraf, Characterization of ferrite-austenite boundary region of duplex stainless steels by SAES, J. Electrochem. Soc., 151(2004), No. 11, art. No. B581. doi: 10.1149/1.1796447
      [13]
      W.T. Tsai and J.R. Chen, Galvanic corrosion between the constituent phases in duplex stainless steel, Corros. Sci., 49(2007), No. 9, p. 3659. doi: 10.1016/j.corsci.2007.03.035
      [14]
      C.O.A. Olsson, The influence of nitrogen and molybdenum on passive films formed on the austenoferritic stainless steel 2205 studied by AES and XPS, Corros. Sci., 37(1995), No. 3, p. 467. doi: 10.1016/0010-938X(94)00148-Y
      [15]
      Y. Jin, Z.G. Lai, P. Bi, S.T. Yan, L. Wen, Y.C. Wang, J.S. Pan, and C. Leygraf, Combining lithography and capillary techniques for local electrochemical property measurements, Electrochem. Commun., 87(2018), p. 53. doi: 10.1016/j.elecom.2017.12.027
      [16]
      S.Y. Cai, L. Wen, X.Q. Yao, F.F. Huang, Z.G. Yu, and Y. Jin, Coulostatic perturbation measurements and the corresponding time-to-frequency transform data analysis for micro-electrochemical study, J. Electrochem. Soc., 168(2021), No. 2, art. No. 021508. doi: 10.1149/1945-7111/abe0d3
      [17]
      Z.G. Lai, P. Bi, L. Wen, Y.P. Xue, and Y. Jin, Local electrochemical properties of fusion boundary region in SA508-309L/308L overlay welded joint, Corros. Sci., 155(2019), p. 75. doi: 10.1016/j.corsci.2019.04.021
      [18]
      D. Nakhaie, A. Davoodi, and A. Imani, The role of constituent phases on corrosion initiation of NiAl bronze in acidic media studied by SEM-EDS, AFM and SKPFM, Corros. Sci., 80(2014), p. 104. doi: 10.1016/j.corsci.2013.11.017
      [19]
      L. Weber and P.J. Uggowitzer, Partitioning of chromium and molybdenum in super duplex stainless steels with respect to nitrogen and nickel content, Mater. Sci. Eng. A, 242(1998), No. 1-2, p. 222. doi: 10.1016/S0921-5093(97)00521-2
      [20]
      Y.C. Lu, M.B. Ives, and C.R. Clayton, Synergism of alloying elements and pitting corrosion resistance of stainless steels, Corros. Sci., 35(1993), No. 1-4, p. 89. doi: 10.1016/0010-938X(93)90137-6
      [21]
      N. Birbilis, B.N. Padgett, and R.G. Buchheit, Limitations in microelectrochemical capillary cell testing and transformation of electrochemical transients for acquisition of microcell impedance data, Electrochim. Acta, 50(2005), No. 16-17, p. 3536. doi: 10.1016/j.electacta.2005.01.010
      [22]
      S.Y. Cai, L. Wen, and Y. Jin, A comparative study on corrosion kinetic parameter estimation methods for the early stage corrosion of Q345B steel in 3.5wt% NaCl solution, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1112. doi: 10.1007/s12613-017-1502-6

    Catalog


    • /

      返回文章
      返回