Cite this article as: |
Chunmei Yu, Shan Ren, Guangwei Wang, Junjun Xu, Haipeng Teng, Tao Li, Chunchao Huang, and Chuan Wang, Kinetic analysis and modeling of maize straw hydrochar combustion using a multi-Gaussian-distributed activation energy model, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 464-472. https://doi.org/10.1007/s12613-021-2305-3 |
任山 E-mail: shan.ren@cqu.edu.cn
王广伟 E-mail: guangwei_wang@ustb.edu.cn
农林废弃生物质作为植物光合作用的产物,具有可再生、总量大、分布广和低污染的特点,是目前唯一具有可再生性能的含碳清洁燃料。相比于其它种类的可再生能源,生物质还具备良好的可存储性和易运输特点,将丰富的农林废弃生物质应用于炼铁生产将助力钢铁行业实现“双碳”目标。但农林废弃生物质也存在水分高,固定碳和发热值低,碱金属含量高和燃烧过程不稳定的缺点,不经提质处理难以满足炼铁生产对固体燃料的性能要求。本文采用水热炭化技术处理玉米秸秆制备水热炭产品,并采用多元高斯分布活化能模型(DAEM)研究玉米秸秆水热炭的燃烧动力学。结果表明,采用DAEM模型能够精确表征玉米秸秆以及玉米秸秆水热炭的燃烧动力学行为,玉米秸秆原料的燃烧过程可以分为四个阶段:半纤维素、纤维素、木质素和半焦的燃烧,玉米秸秆水热炭的燃烧可分为三种阶段:纤维素、木质素和半焦的燃烧。动力学计算表明纤维素、木质素和半焦燃烧的平均活化能范围为分别为273.7–292.8 kJ/mol、315.1–334.5 kJ/mol和354.4–370 kJ/mol,标准差分别为2.1–23.1 kJ/mol、9.5–27.4 kJ/mol和12.1–22.9 kJ/mol,随着水热炭化温度的升高,玉米秸秆水热炭中纤维素和木质素质量分数先升高后降低,而半焦的质量分数逐渐增加。
Combustion kinetics of the hydrochar was investigated using a multi-Gaussian-distributed activation energy model (DAEM) to expand the knowledge on the combustion mechanisms. The results demonstrated that the kinetic parameters calculated by the multi-Gaussian-DAEM accurately represented the experimental conversion rate curves. Overall, the feedstock combustion could be divided into four stages: the decomposition of hemicellulose, cellulose, lignin, and char combustion. The hydrochar combustion could in turn be divided into three stages: the combustion of cellulose, lignin, and char. The mean activation energy ranges obtained for the cellulose, lignin, and char were 273.7–292.8, 315.1–334.5, and 354.4–370 kJ/mol, respectively, with the standard deviations of 2.1–23.1, 9.5–27.4, and 12.1–22.9 kJ/mol, respectively. The cellulose and lignin contents first increased and then decreased with increasing hydrothermal carbonization (HTC) temperature, while the mass fraction of char gradually increased.
[1] |
R. Barzegar, A. Yozgatligil, H. Olgun, and A.T. Atimtay, TGA and kinetic study of different torrefaction conditions of wood biomass under air and oxy-fuel combustion atmospheres, J. Energy Inst., 93(2020), No. 3, p. 889. doi: 10.1016/j.joei.2019.08.001
|
[2] |
X.E. Wang, K.X. Li, J.N. Song, H.Y. Duan, and S. Wang, Integrated assessment of straw utilization for energy production from views of regional energy, environmental and socioeconomic benefits, J. Clean. Prod., 190(2018), p. 787. doi: 10.1016/j.jclepro.2018.04.191
|
[3] |
W. Xiong, G.Q. Wang, and S.X. Zhou, Comparison of energy consumption and environmental impact of replacement of coal with straw injection into blast furnace, Environ. Sci. Technol., 36(2013), No. 4, p. 137.
|
[4] |
J.B. Chen, Y.H. Wang, X.M. Lang, X.E. Ren, and S.S. Fan, Evaluation of agricultural residues pyrolysis under non-isothermal conditions: Thermal behaviors, kinetics, and thermodynamics, Bioresour. Technol., 241(2017), p. 340. doi: 10.1016/j.biortech.2017.05.036
|
[5] |
M. Heidari, A. Dutta, B. Acharya, and S. Mahmud, A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion, J. Energy Inst., 92(2019), No. 6, p. 1779. doi: 10.1016/j.joei.2018.12.003
|
[6] |
N. Zhang, G.W. Wang, J.L. Zhang, X.J. Ning, Y.J. Li, W. Liang, and C. Wang, Study on co-combustion characteristics of hydrochar and anthracite coal, J. Energy Inst., 93(2020), No. 3, p. 1125. doi: 10.1016/j.joei.2019.10.006
|
[7] |
Z.H. Chen, M. Hu, X.L. Zhu, D.B. Guo, S.M. Liu, Z.Q. Hu, B. Xiao, J.B. Wang, and M. Laghari, Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis, Bioresour. Technol., 192(2015), p. 441. doi: 10.1016/j.biortech.2015.05.062
|
[8] |
K.Y. Park, K. Lee, and D. Kim, Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization, Bioresour. Technol., 258(2018), p. 119. doi: 10.1016/j.biortech.2018.03.003
|
[9] |
J. Zhao, H.B. Zuo, J.S. Wang, and Q.G. Xue, The mechanism and products for co-thermal extraction of biomass and low-rank coal with NMP, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1512. doi: 10.1007/s12613-019-1872-z
|
[10] |
G.K. Parshetti, A. Quek, R. Betha, and R. Balasubramanian, TGA-FTIR investigation of co-combustion characteristics of blends of hydrothermally carbonized oil palm biomass (EFB) and coal, Fuel Process. Technol., 118(2014), p. 228. doi: 10.1016/j.fuproc.2013.09.010
|
[11] |
H. Li, S.Y. Wang, X.Z. Yuan, Y.N. Xi, Z.L. Huang, M.J. Tan, and C.Z. Li, The effects of temperature and color value on hydrochars’ properties in hydrothermal carbonization, Bioresour. Technol., 249(2018), p. 574. doi: 10.1016/j.biortech.2017.10.046
|
[12] |
Z.L. Yao, X.Q. Ma, and Y.S. Lin, Effects of hydrothermal treatment temperature and residence time on characteristics and combustion behaviors of green waste, Appl. Therm. Eng., 104(2016), p. 678. doi: 10.1016/j.applthermaleng.2016.05.111
|
[13] |
H.B. Sharma, S. Panigrahi, and B.K. Dubey, Hydrothermal carbonization of yard waste for solid bio-fuel production: Study on combustion kinetic, energy properties, grindability and flowability of hydrochar, Waste Manage., 91(2019), p. 108. doi: 10.1016/j.wasman.2019.04.056
|
[14] |
D. Chiaramonti, M. Prussi, M. Buffi, A.M. Rizzo, and L. Pari, Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production, Appl. Energy, 185(2017), p. 963. doi: 10.1016/j.apenergy.2015.12.001
|
[15] |
F.Y. Liu, R.D. Yu, X.D. Ji, and M.H. Guo, Hydrothermal carbonization of holocellulose into hydrochar: Structural, chemical characteristics, and combustion behavior, Bioresour. Technol., 263(2018), p. 508. doi: 10.1016/j.biortech.2018.05.019
|
[16] |
G.K. Zhu, L. Yang, Y. Gao, J.Y. Xu, H.J. Chen, Y.Z. Zhu, Y.F. Wang, C.H. Liao, C. Lu, and C. Zhu, Characterization and pelletization of cotton stalk hydrochar from HTC and combustion kinetics of hydrochar pellets by TGA, Fuel, 244(2019), p. 479. doi: 10.1016/j.fuel.2019.02.039
|
[17] |
N. Zhang, G.W. Wang, C.M. Yu, J.L. Zhang, H. Dang, C.L. Zhang, X.J. Ning, and C. Wang, Physicochemical structure characteristics and combustion kinetics of low-rank coal by hydrothermal carbonization, Energy, 238(2022), art. No. 121682. doi: 10.1016/j.energy.2021.121682
|
[18] |
M.A. Islam, G. Kabir, M. Asif, and B.H. Hameed, Combustion kinetics of hydrochar produced from hydrothermal carbonisation of Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis, Bioresour. Technol., 194(2015), p. 14. doi: 10.1016/j.biortech.2015.06.094
|
[19] |
C. He, A. Giannis, and J.Y. Wang, Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior, Appl. Energy, 111(2013), p. 257. doi: 10.1016/j.apenergy.2013.04.084
|
[20] |
Q.V. Bach, K.Q. Tran, and Ø. Skreiberg, Combustion kinetics of wet-torrefied forest residues using the distributed activation energy model (DAEM), Appl. Energy, 185(2017), p. 1059. doi: 10.1016/j.apenergy.2016.02.056
|
[21] |
J.Z. Zhang, T.J. Chen, J.L. Wu, and J.H. Wu, Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: Comparison of N2 and CO2 atmosphere, Bioresour. Technol., 166(2014), p. 87. doi: 10.1016/j.biortech.2014.05.030
|
[22] |
G.W. Wang, J.L. Zhang, J.Y. Lee, X.M. Mao, L. Ye, W.R. Xu, X.J. Ning, N. Zhang, H.P. Teng, and C. Wang, Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace, Appl. Energy, 266(2020), art. No. 114818. doi: 10.1016/j.apenergy.2020.114818
|
[23] |
Z.Z. Ma, J.H. Xie, N.B. Gao, and C. Quan, Pyrolysis behaviors of oilfield sludge based on Py-GC/MS and DAEM kinetics analysis, J. Energy Inst., 92(2019), No. 4, p. 1053. doi: 10.1016/j.joei.2018.07.001
|
[24] |
J.M. Cai, W.X. Wu, and R.H. Liu, Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis, Bioresour. Technol., 132(2013), p. 423. doi: 10.1016/j.biortech.2012.12.073
|
[25] |
D. Kim, K. Lee, and K.Y. Park, Upgrading the characteristics of biochar from cellulose, lignin, and xylan for solid biofuel production from biomass by hydrothermal carbonization, J. Ind. Eng. Chem., 42(2016), p. 95. doi: 10.1016/j.jiec.2016.07.037
|
[26] |
Y.W. Huang, M.Q. Chen, and H.F. Luo, Nonisothermal torrefaction kinetics of sewage sludge using the simplified distributed activation energy model, Chem. Eng. J., 298(2016), p. 154. doi: 10.1016/j.cej.2016.04.018
|
[27] |
J.J. Xu, H.B. Zuo, G.W. Wang, J.L. Zhang, K. Guo, and W. Liang, Gasification mechanism and kinetics analysis of coke using distributed activation energy model (DAEM), Appl. Therm. Eng., 152(2019), p. 605. doi: 10.1016/j.applthermaleng.2019.02.104
|
[28] |
J.M. Cai, W.X. Wu, and R.H. Liu, An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass, Renewable Sustainable Energy Rev., 36(2014), p. 236. doi: 10.1016/j.rser.2014.04.052
|
[29] |
J.X. Cai, B. Li, C.Y. Chen, J. Wang, M. Zhao, and K. Zhang, Hydrothermal carbonization of tobacco stalk for fuel application, Bioresour. Technol., 220(2016), p. 305. doi: 10.1016/j.biortech.2016.08.098
|
[30] |
Q. Wu, S.T. Yu, N.J. Hao, T. Wells, X.Z. Meng, M. Li, Y.Q. Pu, S.X. Liu, and A.J. Ragauskas, Characterization of products from hydrothermal carbonization of pine, Bioresour. Technol., 244(2017), p. 78. doi: 10.1016/j.biortech.2017.07.138
|
[31] |
H.P. Yang, R. Yan, H.P. Chen, D.H. Lee, and C.G. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86(2007), No. 12-13, p. 1781. doi: 10.1016/j.fuel.2006.12.013
|
[32] |
D.Y. Chen, Y. Zheng, and X.F. Zhu, In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: Kinetic analysis for the drying and devolatilization stages, Bioresour. Technol., 131(2013), p. 40. doi: 10.1016/j.biortech.2012.12.136
|
[33] |
M. Hu, Z.H. Chen, S.K. Wang, D.B. Guo, C.F. Ma, Y. Zhou, J. Chen, M. Laghari, S. Fazal, B. Xiao, B.P. Zhang, and S. Ma, Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method, Energy Convers. Manage., 118(2016), p. 1. doi: 10.1016/j.enconman.2016.03.058
|
[34] |
Y.J. Wang, L. Qiu, M.Q. Zhu, G.T. Sun, T.L. Zhang, and K. Kang, Comparative evaluation of hydrothermal carbonization and low temperature pyrolysis of Eucommia ulmoides Oliver for the production of solid biofuel, Sci. Rep., 9(2019), No. 1, art. No. 5535. doi: 10.1038/s41598-019-38849-4
|
[35] |
G. Várhegyi, P. Szabó, E. Jakab, F. Till, and J.R. Richard, Mathematical modeling of char reactivity in Ar–O2 and CO2–O2 mixtures, Energy Fuels, 10(1996), No. 6, p. 1208. doi: 10.1021/ef950252z
|
[36] |
Q.V. Bach, K.Q. Tran, and Ø. Skreiberg, Comparative study on the thermal degradation of dry- and wet-torrefied woods, Appl. Energy, 185(2017), p. 1051. doi: 10.1016/j.apenergy.2016.01.079
|
[37] |
X.S. Yuan, T. He, H.L. Cao, and Q.X. Yuan, Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods, Renew. Energy, 107(2017), p. 489. doi: 10.1016/j.renene.2017.02.026
|