留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 8
Aug.  2022

图(10)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  1124
  • HTML全文浏览量:  529
  • PDF下载量:  73
  • 被引次数: 0
Fang Yuan, Zheng Zhao, Yanling Zhang,  and Tuo Wu, Effect of Al2O3 content on the viscosity and structure of CaO–SiO2–Cr2O3–Al2O3 slags, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1522-1531. https://doi.org/10.1007/s12613-021-2306-2
Cite this article as:
Fang Yuan, Zheng Zhao, Yanling Zhang,  and Tuo Wu, Effect of Al2O3 content on the viscosity and structure of CaO–SiO2–Cr2O3–Al2O3 slags, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1522-1531. https://doi.org/10.1007/s12613-021-2306-2
引用本文 PDF XML SpringerLink
研究论文

Al2O3含量变化对CaO–SiO2–Cr2O3–Al2O3熔渣粘度及结构的影响

  • 通讯作者:

    张延玲    E-mail: zhangyanling@metall.ustb.edu.cn

文章亮点

  • (1) 系统地测量了CaO–SiO2–Cr2O3–Al2O3熔渣的粘度。
  • (2) 探索了Al2O3含量变化时熔渣粘度及结构的变化规律。
  • (3) 阐述了硅酸盐结构及铝酸盐结构变化与CaO–SiO2–Cr2O3–Al2O3熔渣的粘度之间的关系。
  • 熔渣粘度对冶炼过程中渣金反应的传质有着至关重要的作用,适当的熔渣粘度能够有效促进渣金反应,提升传质效率。为了促进含铬熔渣中铬的回收利用,本文使用柱体旋转法研究了Al2O3含量变化对CaO-SiO2-Cr2O3-Al2O3渣粘度和结构的影响规律。熔渣在高温下表现出良好的牛顿流体行为。当Al2O3含量从0%增加到10wt%时,酸性渣的粘度首先从0.825增加到1.141 Pa·s,然后当Al2O3含量进一步增加到15wt%时,粘度降低到1.071 Pa·s。当Al2O3含量从0增加到15wt%时,碱性炉渣的粘度首先从0.084增加到0.158Pa·s,然后当Al2O3含量进一步增加到20wt%时,粘度降低到0.135 Pa·s。此外,含Cr2O3的炉渣比无Cr2O3的炉渣需要更少的Al2O3才能达到最大粘度;对于酸性和碱性炉渣,熔渣粘度达到最大值所需的Al2O3含量分别为10%和15%。熔渣的活化能变化规律与粘度结果一致。拉曼光谱表明,熔渣中仅有少量Al2O3时,Al以[AlO4]四面体形式出现,随着Al2O3含量的逐渐增加,[AlO4]四面体被[AlO6]八面体所取代,对硅酸盐结构的分峰解谱结果也与粘度结果一致。
  • Research Article

    Effect of Al2O3 content on the viscosity and structure of CaO–SiO2–Cr2O3–Al2O3 slags

    + Author Affiliations
    • The effect of Al2O3 content on the viscosity and structure of CaO–SiO2–Cr2O3–Al2O3 slags was investigated to facilitate recycling of Cr in steelmaking slags. The slags exhibit good Newtonian behavior at high temperature. The viscosity of acidic slag first increases from 0.825 to 1.141 Pa·s as the Al2O3 content increases from 0 to 10wt% and then decreases to 1.071 Pa·s as the Al2O3 content increases further to 15wt%. The viscosity of basic slag first increases from 0.084 to 0.158 Pa·s as the Al2O3 content increases from 0 to 15wt% and then decreases to 0.135 Pa·s as the Al2O3 content increases further to 20wt%. Furthermore, Cr2O3-containing slag requires less Al2O3 to reach the maximum viscosity than Cr2O3-free slag; the Al2O3 contents at which the behavior changes are 10wt% and 15wt% for acidic and basic slags, respectively. The activation energy of the slags is consistent with the viscosity results. Raman spectra demonstrate that [AlO4] tetrahedra appear initially and were replaced by [AlO6] octahedra with further addition of Al2O3. The dissolved organic phosphorus content of the slag first increases and then decreases with increasing Al2O3 content, which is consistent with the viscosity and Raman results.
    • loading
    • [1]
      K.I. Miyamoto, K. Kato, and T. Yuki, Effect of slag properties on reduction rate of chromium oxide in Cr2O3 containing slag by carbon in steel, Tetsu-to-Hagane, 88(2002), No. 12, p. 838. doi: 10.2355/tetsutohagane1955.88.12_838
      [2]
      X.T. Zeng, C.H. Yuan, H. Xu, J.X. Han and Y. Tian, Development status quo of the world chromite resources and investment suggestion, China Min., 24(2015), No. 8, p. 16.
      [3]
      M. Kekkonen, H. Oghbasilasie, and S. Louhenkilpi, Viscosity Models for Molten Slags, Aalto University publication series, Helsinki, 2012.
      [4]
      L.J. Wang and S. Seetharaman, Experimental studies on the oxidation states of chromium oxides in slag systems, Metall. Mater. Trans. B, 41(2010), No. 5, p. 946. doi: 10.1007/s11663-010-9383-3
      [5]
      V.D. Eisenhüttenleute, Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Düsseldorf, 1995.
      [6]
      E. Minami, M. Amatatsu, and N. Sano, Viscosity measurement of slag containing chromium oxide, Tetsu-to-Hagane, 73(1987), p. S871.
      [7]
      G.B. Qiu, L. Chen, J.Y. Zhu, X.W. Lv, and C.G. Bai, Effect of Cr2O3 addition on viscosity and structure of Ti-bearing blast furnace slag, ISIJ Int., 55(2015), No. 7, p. 1367. doi: 10.2355/isijinternational.55.1367
      [8]
      C. Xu, W.L. Wang, L.J. Zhou, S.L. Xie, and C. Zhang, The effects of Cr2O3 on the melting, viscosity, heat transfer, and crystallization behaviors of mold flux used for the casting of Cr-bearing alloy steels, Metall. Mater. Trans. B, 46(2015), No. 2, p. 882. doi: 10.1007/s11663-014-0258-x
      [9]
      W.J. Huang, Y.H. Zhao, S. Yu, L.X. Zhang, Z.C. Ye, N. Wang, and M. Chen, Viscosity property and structure analysis of FeO–SiO2–V2O3–TiO2–Cr2O3 slags, ISIJ Int., 56(2016), No. 4, p. 594. doi: 10.2355/isijinternational.ISIJINT-2015-457
      [10]
      R.Z. Xu, J.L. Zhang, Z.Y. Wang, and K.X. Jiao, Influence of Cr2O3 and B2O3 on viscosity and structure of high alumina slag, Steel Res. Int., 88(2017), No. 4, art. No. 1600241. doi: 10.1002/srin.201600241
      [11]
      Q.H. Li, J.T. Gao, Y.L. Zhang, Z.Q. An, and Z.C. Guo, Viscosity measurement and structure analysis of Cr2O3-bearing CaO–SiO2–MgO–Al2O3 slags, Metall. Mater. Trans. B, 48(2017), No. 1, p. 346. doi: 10.1007/s11663-016-0858-8
      [12]
      L. Forsbacka, and L. Holappa, Viscosity of SiO2–CaO–CrOx slags in contact with metallic chromium and application of the Iida model, [in] VII International Conference on Molten Slags, Fluxes and Salts, Johannesburg, 2004, p. 129.
      [13]
      L. Forsbacka, L. Holappa, A. Kondratiev, and E. Jak, Experimental study and modelling of viscosity of chromium containing slags, Steel Res. Int., 78(2007), No. 9, p. 676. doi: 10.1002/srin.200706269
      [14]
      L. Forsbacka and L. Holappa, Viscosity of CaO–CrOx–SiO2 slags in a relatively high oxygen partial pressure atmosphere, Scand. J. Metall., 33(2004), No. 5, p. 676. doi: 10.1111/j.1600-0692.2004.00698.x
      [15]
      K.C. Mills, L. Yuan, Z. Li, G.H. Zhang, and K.C. Chou, A review of the factors affecting the thermophysical properties of silicate slags, High Temp. Mater. Processes, 31(2012), No. 4-5, p. 301. doi: 10.1515/htmp-2012-0097
      [16]
      F. Yuan, Z. Zhao, Y.L. Zhang, J.T. Gao, and T. Wu, Viscosity measurements of CrO-bearing CaO–SiO2–5%Al2O3–CrO slag equilibrating with metallic Cr, ISIJ Int., 60(2020), No. 3, p. 613. doi: 10.2355/isijinternational.ISIJINT-2019-377
      [17]
      T. Wu, Y.L. Zhang, F. Yuan, and Z.Q. An, Effects of the Cr2O3 content on the viscosity of CaO–SiO2–10Pct Al2O3–Cr2O3 quaternary slag, Metall. Mater. Trans. B, 49(2018), No. 4, p. 1719. doi: 10.1007/s11663-018-1258-z
      [18]
      J.H. Park, H. Kim, and D.J. Min, Novel approach to link between viscosity and structure of silicate melts via Darken’s excess stability function: Focus on the amphoteric behavior of alumina, Metall. Mater. Trans. B, 39(2008), No. 1, p. 150. doi: 10.1007/s11663-007-9122-6
      [19]
      J.H. Park, D.J. Min, and H.S. Song, Amphoteric behavior of alumina in viscous flow and structure of CaO–SiO2 (–MgO) –Al2O3 slags, Metall. Mater. Trans. B, 35(2004), No. 2, p. 269. doi: 10.1007/s11663-004-0028-2
      [20]
      F. Shahbazian, S.C. Du, and S. Seetharaman, The effect of addition of Al2O3 on the viscosity of CaO–“FeO”–SiO2–CaF2 slags, ISIJ Int., 42(2002), No. 2, p. 155. doi: 10.2355/isijinternational.42.155
      [21]
      H.S. Park, S.S. Park, and I. Sohn, The viscous behavior of FeOt–Al2O3–SiO2 copper smelting slags, Metall. Mater. Trans. B, 42(2011), No. 4, p. 692. doi: 10.1007/s11663-011-9512-7
      [22]
      B.O. Mysen, D. Virgo, and C.M. Scarfe, Relations between the anionic structure and viscosity of silicate melts—A Raman spectroscopic study, Am. Mineral., 65(1980), No. 7-8, p. 690.
      [23]
      P. McMillan, A Raman spectroscopic study of glasses in the system CaO–MgO–SiO2, Am. Mineral., 69(1984), No. 7-8, p. 645.
      [24]
      D.R. Neuville, L. Cormier, and D. Massiot, Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27Al MQ-MAS NMR and Raman spectroscopy, Chem. Geol., 229(2006), No. 1-3, p. 173. doi: 10.1016/j.chemgeo.2006.01.019
      [25]
      I. Sohn and D.J. Min, A review of the relationship between viscosity and the structure of calcium-silicate-based slags in ironmaking, Steel Res. Int., 83(2012), No. 7, p. 611. doi: 10.1002/srin.201200040
      [26]
      C.Y. Xu, C. Wang, R.Z. Xu, J.L. Zhang, and K.X. Jiao, Effect of Al2O3 on the viscosity of CaO–SiO2–Al2O3–MgO–Cr2O3 slags, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 797. doi: 10.1007/s12613-020-2187-9
      [27]
      K.Z. Gu, W.L. Wang, J. Wei, H. Matsuura, F. Tsukihashi, I. Sohn, and D.J. Min, Heat-transfer phenomena across mold flux by using the inferred emitter technique, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1393. doi: 10.1007/s11663-012-9718-3
      [28]
      L. Forsbacka, L. Holappa, T. Iida, Y. Kita, and Y. Toda, Experimental study of viscosities of selected CaO–MgO–Al2O3–SiO2 slags and application of the Iida model, Scand. J. Metall., 32(2003), No. 5, p. 273. doi: 10.1034/j.1600-0692.2003.00652.x
      [29]
      J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, Influence of MgO and Al2O3 contents on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1291. doi: 10.2355/isijinternational.44.1291
      [30]
      Y.B. Cheng, C. Xu, S.Y. Pan, Y.F. Xia, R.C. Liu, and S.X. Wang, An investigation of the structural effects of Fe3+ in the alkali-silicate glasses, J. Non-Cryst. Solids, 80(1986), No. 1-3, p. 201. doi: 10.1016/0022-3093(86)90396-0
      [31]
      L. Forsbacka, Experiences in Slag Viscosity Measurement by Rotation Cylinder Method, Helsinki University of Technology, Helsinki, 2015.
      [32]
      M. Chen, S. Raghunath, and B.J. Zhao, Viscosity of SiO2–“FeO”–Al2O3 system in equilibrium with metallic Fe, Metall. Mater. Trans. B, 44(2013), No. 4, p. 820. doi: 10.1007/s11663-013-9831-y
      [33]
      J.H. Park, Composition–structure–property relationships of CaO–MO–SiO2 (M = Mg2+, Mn2+) systems derived from micro-Raman spectroscopy, J. Non Cryst. Solids, 358(2012), No. 23, p. 3096. doi: 10.1016/j.jnoncrysol.2012.08.014
      [34]
      Z. Kalicka, E. Kawecka-Cebula, and K. Pytel, Application of the Iida model for estimation of slag viscosity for Al2O3–Cr2O3–CaO–CaF2 systems, Arch. Metall. Mater., 54(2009), No. 1, p. 179.
      [35]
      J.F. Lü, Z.N. Jin, H.Y. Yang, L.L. Tong, G.B. Chen, and F.X. Xiao, Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO–SiO2–“FeO”–12wt%ZnO–3wt%Al2O3 slags, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 756. doi: 10.1007/s12613-017-1459-5
      [36]
      C.B. Shi, D.L. Zheng, S.H. Shin, J. Li, and J.W. Cho, Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels, Int. J. Miner. Metall. Mater., 24(2017), No. 1, p. 18. doi: 10.1007/s12613-017-1374-9
      [37]
      J.S. Machin, T.B. Yee, and D.L. Hanna, Viscosity studies of system CaO–MgO–Al2O3–SiO2: III, 35, 45, and 50% SiO2, J. Am. Ceram. Soc., 35(1952), No. 12, p. 322. doi: 10.1111/j.1151-2916.1952.tb13057.x
      [38]
      S. Arrhenius, The viscosity of aqueous mixture, Z. Phys. Chem., 1(1887), p. 285.
      [39]
      K.C. Mills, The influence of structure on the physico-chemical properties of slags, ISIJ Int., 33(1993), No. 1, p. 148. doi: 10.2355/isijinternational.33.148
      [40]
      G.C. Jiang and J.L. You, High temperature Raman spectroscopy used in the study of microstructure of silicate melts, J. Chin. Ceram. Soc., 31(2003), No. 10, p. 998.
      [41]
      R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A, 32(1976), No. 5, p. 751. doi: 10.1107/S0567739476001551
      [42]
      T.S. Kim and J.H. Park, Structure–viscosity relationship of low-silica calcium aluminosilicate melts, ISIJ Int., 54(2014), No. 9, p. 2031. doi: 10.2355/isijinternational.54.2031
      [43]
      L.J. Wang, Y.X. Wang, Q. Wang, and K. Chou, Raman structure investigations of CaO–MgO–Al2O3–SiO2–CrOx and its correlation with sulfide capacity, Metall. Mater. Trans. B, 47(2016), No. 1, p. 10. doi: 10.1007/s11663-015-0469-9
      [44]
      T.J. Dines and S. Inglis, Raman spectroscopic study of supported chromium(VI) oxide catalysts, Phys. Chem. Chem. Phys., 5(2003), No. 6, p. 1320. doi: 10.1039/b211857b
      [45]
      J.J. Yang, H.F. Cheng, W.N. Martens, and R.L. Frost, Transition of synthetic chromium oxide gel to crystalline chromium oxide: A hot-stage Raman spectroscopic study, J. Raman Spectrosc., 42(2011), No. 5, p. 1069. doi: 10.1002/jrs.2794
      [46]
      J.D. Frantza and B.O. Mysen, Raman spectra and structure of BaO–SiO2–SrO–SiO2 and CaO–SiO2 melts to 1600°C, Chem. Geol., 121(1995), No. 1-4, p. 155. doi: 10.1016/0009-2541(94)00127-T
      [47]
      B.O. Mysen and J.D. Frantz, Structure of silicate melts at high temperature: In-situ measurements in the system BaO–SiO2 to 1669°C, Am. Mineral., 78(1993), No. 7-8, p. 699.
      [48]
      Y.Q. Wu, G.C. Jiang, J.L. You, H.Y. Hou, and H. Chen, Raman scattering coefficients of symmetrical stretching modes of microstructural units in sodium silicate melts, Acta Phys. Sin., 54(2005), No. 2, art. No. 961. doi: 10.7498/aps.54.961
      [49]
      B.O. Mysen and J.D. Frantz, Silicate melts at magmatic temperatures: In-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units, Contrib. Mineral. Petrol., 117(1994), No. 1, p. 1. doi: 10.1007/BF00307725
      [50]
      J.F. Stebbins, Effects of temperature and composition on silicate glass structure and dynamics: SI-29 NMR results, J. Non-Cryst. Solids, 106(1988), No. 1-3, p. 359. doi: 10.1016/0022-3093(88)90289-X
      [51]
      J.L. You, G.C. Jiang, and K.D. Xu, High temperature Raman spectra of sodium disilicate crystal, glass and its liquid, J. Non-Cryst. Solids, 282(2001), No. 1, p. 125. doi: 10.1016/S0022-3093(01)00335-0

    Catalog


    • /

      返回文章
      返回