留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 1
Jan.  2022

图(5)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1097
  • HTML全文浏览量:  448
  • PDF下载量:  75
  • 被引次数: 0
Bowei Zhang, Qiao Zhang, Zhan Zhang, Kui Xiao, Qiong Yao, Guojia Ma, Gang Sun,  and Junsheng Wu, Incorporation of nano/micron-SiC particles in Ni-based composite coatings towards enhanced mechanical and anti-corrosion properties, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 153-160. https://doi.org/10.1007/s12613-021-2307-1
Cite this article as:
Bowei Zhang, Qiao Zhang, Zhan Zhang, Kui Xiao, Qiong Yao, Guojia Ma, Gang Sun,  and Junsheng Wu, Incorporation of nano/micron-SiC particles in Ni-based composite coatings towards enhanced mechanical and anti-corrosion properties, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 153-160. https://doi.org/10.1007/s12613-021-2307-1
引用本文 PDF XML SpringerLink
研究论文

SiC纳米/微米颗粒增强Ni基复合涂层的力学和耐腐蚀性能

  • 通讯作者:

    吴俊升    E-mail: wujs76@163.com

文章亮点

  • (1) SiC颗粒的掺入有利于Ni晶粒尺寸的减小。
  • (2) 中微米SiC颗粒(8 μm和1.5 μm)能显著提高Ni复合镀层的显微硬度,但会损害其耐蚀性。
  • (3) 纳米SiC和微米SiC颗粒的结合提高了复合涂层的致密性,从而提高了涂层的长期耐蚀性。
  • 通过电化学共沉积在瓦特镀液中制备了含有纳米/微米SiC颗粒的Ni基复合涂层,然后对其力学和防腐性能进行了评估。显微观察发现,不同尺寸的SiC颗粒均能很好地与Ni基体结合。X射线衍射(XRD)结果表明,尺寸较小的SiC颗粒减弱了Ni沿(200)晶面的优先生长。此外,引入中微米(8 μm和1.5 μm) SiC颗粒可显著提高Ni复合镀层的显微硬度。电化学测试表明,微米SiC颗粒会降低Ni复合涂层的耐蚀性,这主要是由于微米SiC颗粒引起的结构缺陷所致。纳米SiC (50 nm)颗粒与中微米(1.5 μm)颗粒的结合可提高复合涂层的致密性,有利于涂层的长期耐腐蚀性能,但显微硬度损失可忽略不计。

  • Research Article

    Incorporation of nano/micron-SiC particles in Ni-based composite coatings towards enhanced mechanical and anti-corrosion properties

    + Author Affiliations
    • Ni-based composite coatings incorporated with nano/micron SiC particles were fabricated via electrochemical co-deposition in Watts bath, followed by the evaluation of their mechanical and anti-corrosion properties. The micrographic observations suggest that the SiC particles with various sizes can be well incorporated to the Ni substrate. X-ray diffraction (XRD) patterns indicate that SiC particles with smaller sizes could weaken the preferential growth of Ni along (200) facet. In addition, it is found that the incorporated SiC particles with medium micron sizes (8 and 1.5 μm) could significantly enhance the micro-hardness of the Ni composite coatings. Nevertheless, electrochemical measurements demonstrate that micron-sized SiC particles would weaken the corrosion resistance of Ni composite coatings ascribed to the structure defects induced. In contrast, the combined incorporation of nanosized (50 nm) SiC particles with medium micron (1.5 μm) ones is capable of promoting the compactness of the composite coatings, which is beneficial to the long-term corrosion resistance with negligible micro-hardness loss.

    • loading
    • [1]
      V. Torabinejad, M. Aliofkhazraei, S. Assareh, M.H. Allahyarzadeh, and A.S. Rouhaghdam, Electrodeposition of Ni–Fe alloys, composites, and nano coatings—A review, J. Alloys Compd., 691(2017), p. 841. doi: 10.1016/j.jallcom.2016.08.329
      [2]
      Y.H. Ahmad and A.M.A. Mohamed, Electrodeposition of nanostructured nickel-ceramic composite coatings: A review, Int. J. Electrochem. Sci., 9(2014), p. 1942.
      [3]
      M. Sabzi, S.M. Dezfuli, and Z. Balak, Crystalline texture evolution, control of the tribocorrosion behavior, and significant enhancement of the abrasion properties of a Ni–P nanocomposite coating enhanced by zirconia nanoparticles, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 1020. doi: 10.1007/s12613-019-1805-x
      [4]
      W. Jiang, L.D. Shen, M.B. Qiu, X. Wang, M.Z. Fan, and Z.J. Tian, Preparation of Ni–SiC composite coatings by magnetic field-enhanced jet electrodeposition, J. Alloys Compd., 762(2018), p. 115. doi: 10.1016/j.jallcom.2018.05.097
      [5]
      Y. Zhou, F.Q. Xie, X.Q. Wu, W.D. Zhao, and X. Chen, A novel plating apparatus for electrodeposition of Ni–SiC composite coatings using circulating-solution co-deposition technique, J. Alloys Compd., 699(2017), p. 366. doi: 10.1016/j.jallcom.2016.12.331
      [6]
      W. Jiang, L.D. Shen, M.B. Qiu, M.Y. Xu, and Z.J. Tian, Microhardness, wear, and corrosion resistance of Ni–SiC composite coating with magnetic-field-assisted jet electrodeposition, Mater. Res. Express, 5(2018), No. 9, art. No. 096407. doi: 10.1088/2053-1591/aad72c
      [7]
      Y. Yang and Y.H. Liu, Effects of current density on the microstructure and the corrosion resistance of alumina coatings embedded with SiC nano-particles produced by micro-arc oxidation, J. Mater. Sci. Technol., 26(2010), No. 11, p. 1016. doi: 10.1016/S1005-0302(10)60167-3
      [8]
      H. Gül, F. Kılıç, M. Uysal, S. Aslan, A. Alp, and H. Akbulut, Effect of particle concentration on the structure and tribological properties of submicron particle SiC reinforced Ni metal matrix composite (MMC) coatings produced by electrodeposition, Appl. Surf. Sci., 258(2012), No. 10, p. 4260. doi: 10.1016/j.apsusc.2011.12.069
      [9]
      F. Mayanglambam and M. Russell, Reusing oxide-based pulverised fly ash and medical waste particles to develop electroless nickel composite coatings (Ni–P/fly ash and Ni–P/SiO2–Al2O3), Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1147. doi: 10.1007/s12613-020-2071-7
      [10]
      M. Lekka, A. Lanzutti, C. Zanella, G. Zendron, L. Fedrizzi, and P.L. Bonora, Resistance to localized corrosion of pure Ni, micro- and nano-SiC composite electrodeposits, Pure Appl. Chem., 83(2010), No. 2, p. 295. doi: 10.1351/PAC-CON-10-08-21
      [11]
      I. Garcia, A. Conde, G. Langelaan, J. Fransaer, and J.P. Celis, Improved corrosion resistance through microstructural modifications induced by codepositing SiC-particles with electrolytic nickel, Corros. Sci., 45(2003), No. 6, p. 1173. doi: 10.1016/S0010-938X(02)00220-2
      [12]
      C. Zanella, M. Lekka, and P.L. Bonora, Influence of the particle size on the mechanical and electrochemical behaviour of micro- and nano-nickel matrix composite coatings, J. Appl. Electrochem., 39(2009), No. 1, p. 31. doi: 10.1007/s10800-008-9635-y
      [13]
      V. Medeliene, The influence of B4C and SiC additions on the morphological, physical, chemical and corrosion properties of Ni coatings, Surf. Coat. Technol., 154(2002), No. 1, p. 104. doi: 10.1016/S0257-8972(01)01703-0
      [14]
      R.S. Bajwa, Z. Khan, V. Bakolas, and W. Braun, Water-lubricated Ni-based composite (Ni–Al2O3, Ni–SiC and Ni–ZrO2) thin film coatings for industrial applications, Acta Metall. Sinica Engl. Lett., 29(2016), No. 1, p. 8. doi: 10.1007/s40195-015-0354-1
      [15]
      H.B. Temam, A. Chala, and S. Rahmane, Microhardness and corrosion behavior of Ni–SiC electrodeposited coatings in presence of organic additives, Surf. Coat. Technol., 205(2011), p. S161. doi: 10.1016/j.surfcoat.2011.04.086
      [16]
      C.F. Sun, X.Q. Liu, C.Y. Zhou, C.N. Wang, and H.W. Cao, Preparation and wear properties of magnetic assisted pulse electrodeposited Ni–SiC nanocoatings, Ceram. Int., 45(2019), No. 1, p. 1348. doi: 10.1016/j.ceramint.2018.07.242
      [17]
      P. Tirlapur, M. Muniprakash, and M. Srivastava, Corrosion and wear response of oxide-reinforced nickel composite coatings, J. Mater. Eng. Perform., 25(2016), No. 7, p. 2563. doi: 10.1007/s11665-016-2117-1
      [18]
      A. Amadeh, A. Rahimi, B. Farshchian, and H. Moradi, Corrosion behavior of pulse electrodeposited nanostructure Ni–SiC composite coatings, J. Nanosci. Nanotechnol., 10(2010), No. 8, p. 5383. doi: 10.1166/jnn.2010.1931
      [19]
      M.H. Nazir, Z.A. Khan, A. Saeed, V. Bakolas, W. Braun, R. Bajwa, and S. Rafique, Analyzing and modelling the corrosion behavior of Ni/Al2O3, Ni/SiC, Ni/ZrO2 and Ni/graphene nanocomposite coatings, Materials, 10(2017), No. 11, art. No. 1225. doi: 10.3390/ma10111225
      [20]
      S. Dehgahi, R. Amini, and M. Alizadeh, Corrosion, passivation and wear behaviors of electrodeposited Ni–Al2O3–SiC nano-composite coatings, Surf. Coat. Technol., 304(2016), p. 502. doi: 10.1016/j.surfcoat.2016.07.007
      [21]
      P. Jin, C.F. Sun, C.Y. Zhou, L. Shi, and C. Liu, Effect of SiC particle size on structures and properties of Ni–SiC nanocomposites deposited by magnetic pulse electrodeposition technology, Ceram. Int., 45(2019), No. 16, p. 20155. doi: 10.1016/j.ceramint.2019.06.283
      [22]
      G. Gyawali, B. Joshi, K. Tripathi, and S.W. Lee, Effect of ultrasonic nanocrystal surface modification on properties of electrodeposited Ni and Ni–SiC composite coatings, J. Mater. Eng. Perform., 26(2017), No. 9, p. 4462. doi: 10.1007/s11665-017-2891-4
      [23]
      I. Corni, R.J. Chater, A.R. Boccaccini, and M.P. Ryan, Electro co-deposition of Ni–Al2O3 composite coatings, J. Mater. Sci., 47(2012), No. 14, p. 5361. doi: 10.1007/s10853-012-6381-7
      [24]
      D.M. Jarząbek, C. Dziekoński, W. Dera, J. Chrzanowska, and T. Wojciechowski, Influence of Cu coating of SiC particles on mechanical properties of Ni/SiC co-electrodeposited composites, Ceram. Int., 44(2018), No. 17, p. 21750. doi: 10.1016/j.ceramint.2018.08.271
      [25]
      M.R. Vaezi, S.K. Sadrnezhaad, and L. Nikzad, Electrodeposition of Ni–SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics, Colloids Surf. A: Physicochem. Eng. Aspects, 315(2008), No. 1-3, p. 176. doi: 10.1016/j.colsurfa.2007.07.027
      [26]
      W.W. Zhang and B.S. Li, Electrochemical properties and XPS analysis of Ni–B/SiC nanocomposite coatings, Int. J. Electrochem. Sci., (2018), p. 3516. doi: 10.20964/2018.04.30
      [27]
      S.T. Aruna, V.E. Selvi, V.K. William Grips, and K.S. Rajam, Corrosion- and wear-resistant properties of Ni–Al2O3 composite coatings containing various forms of alumina, J. Appl. Electrochem., 41(2011), No. 4, p. 461. doi: 10.1007/s10800-011-0256-5

    Catalog


    • /

      返回文章
      返回