留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 28 Issue 7
Jul.  2021

图(10)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  6847
  • HTML全文浏览量:  2924
  • PDF下载量:  354
  • 被引次数: 0
Pan-jun Wang, Ling-wei Ma, Xue-qun Cheng,  and Xiao-gang Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 7, pp. 1112-1126. https://doi.org/10.1007/s12613-021-2308-0
Cite this article as:
Pan-jun Wang, Ling-wei Ma, Xue-qun Cheng,  and Xiao-gang Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 7, pp. 1112-1126. https://doi.org/10.1007/s12613-021-2308-0
引用本文 PDF XML SpringerLink
特约综述

晶粒细化对金属材料腐蚀行为的影响研究进展   

  • Invited Review

    Influence of grain refinement on the corrosion behavior of metallic materials: A review

    + Author Affiliations
    • Grain refinement can strengthen the mechanical properties of materials according to the classical Hall–Petch relationship but does not always result in better corrosion resistance. During the past few decades, various techniques have been dedicated to refining grain, along with relevant studies on corrosion behavior, including general corrosion, pitting corrosion, and stress corrosion cracking. However, the fundamental consensus on how grain size influences corrosion behavior has not been reached. This paper reviews existing literature on the beneficial and detrimental effects of grain refinement on corrosion behavior. Moreover, the effects of microstructural changes (i.e., grain boundary, dislocation, texture, residual stress, impurities, and second phase) resulting from grain refinement on corrosion behavior are discussed. The grain refinement not only has an impact on the corrosion performance, but also results in microstructural changes that have a non-negligible effect on corrosion behavior or even outweigh that of grain refinement. Grain size is not the only factor affecting the corrosion behavior of metallic materials; thus, the overall influence of microstructures on corrosion behavior should be understood.

    • loading
    • [1]
      X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du, and C.F. Dong, Materials science: Share corrosion data, Nature, 527(2015), No. 7579, p. 441. doi: 10.1038/527441a
      [2]
      K.B. Tayyab, A. Farooq, A.A. Alvi, A.B. Nadeem, and K.M. Deen, Corrosion behavior of cold-rolled and post heat-treated 316L stainless steel in 0.9wt% NaCl solution, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 440. doi: 10.1007/s12613-020-2054-8
      [3]
      C.D. Dai, Y. Fu, J.X. Guo, and C.W. Du, Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1388. doi: 10.1007/s12613-020-2149-2
      [4]
      L.A. Santa-Cruz, G. Machado, A.A. Vicente, T.F.C. Hermenegildo, and T.F.A. Santos, Effect of high anodic polarization on the passive layer properties of superduplex stainless steel friction stir welds at different chloride electrolyte pH values and temperatures, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 710. doi: 10.1007/s12613-019-1790-0
      [5]
      K.D. Ralston, N. Birbilis, and C.H.J. Davies, Revealing the relationship between grain size and corrosion rate of metals, Scripta Mater., 63(2010), No. 12, p. 1201. doi: 10.1016/j.scriptamat.2010.08.035
      [6]
      G.R. Argade, S.K. Panigrahi, and R.S. Mishra, Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium, Corros. Sci., 58(2012), p. 145. doi: 10.1016/j.corsci.2012.01.021
      [7]
      K.D. Ralston and N. Birbilis, Effect of grain size on corrosion: A review, Corrosion, 66(2010), No. 7, art. No. 075005. doi: 10.5006/1.3462912
      [8]
      H. Miyamoto, Corrosion of ultrafine grained materials by severe plastic deformation, an overview, Mater. Trans., 57(2016), No. 5, p. 559. doi: 10.2320/matertrans.M2015452
      [9]
      S.G. Wang, C.B. Shen, K. Long, H.Y. Yang, F.H. Wang, and Z.D. Zhang, Preparation and electrochemical corrosion behavior of bulk nanocrystalline ingot iron in HCl acid solution, J. Phys. Chem. B, 109(2005), No. 7, p. 2499. doi: 10.1021/jp046297v
      [10]
      S.G. Wang, C.B. Shen, K. Long, T. Zhang, F.H. Wang, and Z.D. Zhang, The electrochemical corrosion of bulk nanocrystalline ingot iron in acidic sulfate solution, J. Phys. Chem. B, 110(2006), No. 1, p. 377. doi: 10.1021/jp0538971
      [11]
      Z.J. Zheng, Y. Gao, Y. Gui, and M. Zhu, Corrosion behaviour of nanocrystalline 304 stainless steel prepared by equal channel angular pressing, Corros. Sci., 54(2012), p. 60. doi: 10.1016/j.corsci.2011.08.049
      [12]
      L. Liu, Y. Li, and F.H. Wang, Electrochemical corrosion behavior of nanocrystalline materials—A review, J. Mater. Sci. Technol., 26(2010), No. 1, p. 1.
      [13]
      M. Hoseini, A. Shahryari, S. Omanovic, and J.A. Szpunar, Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing, Corros. Sci., 51(2009), No. 12, p. 3064. doi: 10.1016/j.corsci.2009.08.017
      [14]
      Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
      [15]
      M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, The shearing characteristics associated with equal-channel angular pressing, Mater. Sci. Eng. A, 257(1998), No. 2, p. 328. doi: 10.1016/S0921-5093(98)00750-3
      [16]
      Y. Huang and T.G. Langdon, Advances in ultrafine-grained materials, Mater. Today, 16(2013), No. 3, p. 85. doi: 10.1016/j.mattod.2013.03.004
      [17]
      J.F. Jiang, Y. Wang, and S.J. Luo, Application of equal channel angular extrusion to semi-solid processing of magnesium alloy, Mater. Charact., 58(2007), No. 2, p. 190. doi: 10.1016/j.matchar.2006.04.017
      [18]
      Y. Yan, G.Q. Zhang, L.J. Chen, and X.W. Li, Thickness-related synchronous increase in strength and ductility of ultrafine-grained pure aluminum sheets, Int. J. Miner. Metall. Mater., 26(2019), No. 11, p. 1450. doi: 10.1007/s12613-019-1839-0
      [19]
      C. Xu, Z. Horita, and T.G. Langdon, The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion, Acta Mater., 56(2008), No. 18, p. 5168. doi: 10.1016/j.actamat.2008.06.036
      [20]
      T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater., 61(2013), No. 19, p. 7035. doi: 10.1016/j.actamat.2013.08.018
      [21]
      Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process, Acta Mater., 47(1999), No. 2, p. 579. doi: 10.1016/S1359-6454(98)00365-6
      [22]
      V. Sharma, U. Prakash, and B.V.M. Kumar, Surface composites by friction stir processing: A review, J. Mater. Process. Technol., 224(2015), p. 117. doi: 10.1016/j.jmatprotec.2015.04.019
      [23]
      R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, 50(2005), No. 1-2, p. 1. doi: 10.1016/j.mser.2005.07.001
      [24]
      R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock, Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels, Mater. Sci. Eng. A, 441(2006), No. 1-2, p. 1. doi: 10.1016/j.msea.2006.08.095
      [25]
      B. Eghbali, Study on the ferrite grain refinement during intercritical deformation of a microalloyed steel, Mater. Sci. Eng. A, 527(2010), No. 15, p. 3407. doi: 10.1016/j.msea.2010.01.075
      [26]
      T.F. Jing, Y.W. Gao, G.Y. Qiao, Q. Li, T.S. Wang, W. Wang, F.R. Xiao, D.Y. Cai, X.Y. Song, and X. Zhao, Nanocrystalline steel processed by severe rolling of lath martensite, Mater. Sci. Eng. A, 432(2006), No. 1-2, p. 216. doi: 10.1016/j.msea.2006.06.047
      [27]
      R.K. Gupta and N. Birbilis, The influence of nanocrystalline structure and processing route on corrosion of stainless steel: A review, Corros. Sci., 92(2015), p. 1. doi: 10.1016/j.corsci.2014.11.041
      [28]
      A. Robertson, U. Erb, and G. Palumbo, Practical applications for electrodeposited nanocrystalline materials, Nanostruct. Mater., 12(1999), No. 5-8, p. 1035. doi: 10.1016/S0965-9773(99)00294-9
      [29]
      C. Cheung, F. Djuanda, U. Erb, and G. Palumbo, Electrodeposition of nanocrystalline Ni-Fe alloys, Nanostruct. Mater., 5(1995), No. 5, p. 513. doi: 10.1016/0965-9773(95)00264-F
      [30]
      I. Khazi and U. Mescheder, Micromechanical properties of anomalously electrodeposited nanocrystalline Nickel-Cobalt alloys: A review, Mater. Res. Express, 6(2019), No. 8, art. No. 082001. doi: 10.1088/2053-1591/ab1bb0
      [31]
      K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Mater., 51(2003), No. 19, p. 5743. doi: 10.1016/j.actamat.2003.08.032
      [32]
      L. Monaco, G. Avramovic-Cingara, G. Palumbo, and U. Erb, Corrosion behaviour of electrodeposited nanocrystalline nickel−iron (NiFe) alloys in dilute H2SO4, Corros. Sci., 130(2018), p. 103. doi: 10.1016/j.corsci.2017.10.018
      [33]
      A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, and Y.T. Zhu, Corrosion resistance of ultra fine-grained Ti, Scripta Mater., 51(2004), No. 3, p. 225. doi: 10.1016/j.scriptamat.2004.04.011
      [34]
      H.S. Kim, S.J. Yoo, J.W. Ahn, D.H. Kim, and W.J. Kim, Ultrafine grained titanium sheets with high strength and high corrosion resistance, Mater. Sci. Eng. A, 528(2011), No. 29-30, p. 8479. doi: 10.1016/j.msea.2011.07.074
      [35]
      H. Maleki-Ghaleh, K. Hajizadeh, A. Hadjizadeh, M.S. Shakeri, S. Ghobadi Alamdari, S. Masoudfar, E. Aghaie, M. Javidi, J. Zdunek, and K.J. Kurzydlowski, Electrochemical and cellular behavior of ultrafine-grained titanium in vitro, Mater. Sci. Eng., C, 39(2014), p. 299. doi: 10.1016/j.msec.2014.03.001
      [36]
      R. Mishra and R. Balasubramaniam, Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel, Corros. Sci., 46(2004), No. 12, p. 3019. doi: 10.1016/j.corsci.2004.04.007
      [37]
      J. Lv, Effect of grain size on mechanical property and corrosion resistance of the Ni-based alloy 690, J. Mater. Sci. Technol., 34(2018), No. 9, p. 1685. doi: 10.1016/j.jmst.2017.12.017
      [38]
      V. Afshari and C. Dehghanian, Effects of grain size on the electrochemical corrosion behaviour of electrodeposited nanocrystalline Fe coatings in alkaline solution, Corros. Sci., 51(2009), No. 8, p. 1844. doi: 10.1016/j.corsci.2009.05.015
      [39]
      E.E. Oguzie, S.G. Wang, Y. Li, and F.H. Wang, Corrosion and corrosion inhibition characteristics of bulk nanocrystalline ingot iron in sulphuric acid, J. Solid State Electrochem., 12(2008), No. 6, p. 721. doi: 10.1007/s10008-007-0415-0
      [40]
      B. Hadzima, M. Janeček, Y. Estrin, and H.S. Kim, Microstructure and corrosion properties of ultrafine-grained interstitial free steel, Mater. Sci. Eng. A, 462(2007), No. 1-2, p. 243. doi: 10.1016/j.msea.2005.11.081
      [41]
      L.Y. Zhang, A.B. Ma, J.H. Jiang, D.H. Yang, D. Song, and J.Q. Chen, Sulphuric acid corrosion of ultrafine-grained mild steel processed by equal-channel angular pressing, Corros. Sci., 75(2013), p. 434. doi: 10.1016/j.corsci.2013.06.028
      [42]
      L.Y. Zhang, A.B. Ma, J.H. Jiang, and X.H. Jie, Effect of processing methods on microhardness and acid corrosion behavior of low-carbon steel, Mater. Des., 65(2015), p. 115. doi: 10.1016/j.matdes.2014.09.010
      [43]
      Y. Li, F. Wang, and G. Liu, Grain size effect on the electrochemical corrosion behavior of surface nanocrystallized low-carbon steel, Corrosion, 60(2004), No. 10, p. 891. doi: 10.5006/1.3287822
      [44]
      S.G. Wang, M. Sun, Y.H. Xu, K. Long, and Z.D. Zhang, Enhanced localized and uniform corrosion resistances of bulk nanocrystalline 304 stainless steel in high-concentration hydrochloric acid solutions at room temperature, J. Mater. Sci. Technol., 34(2018), No. 12, p. 2498. doi: 10.1016/j.jmst.2018.06.006
      [45]
      W. Ye, Y. Li, and F.H. Wang, The improvement of the corrosion resistance of 309 stainless steel in the transpassive region by nano-crystallization, Electrochim. Acta, 54(2009), No. 4, p. 1339. doi: 10.1016/j.electacta.2008.08.073
      [46]
      Y.W. Hao, B. Deng, C. Zhong, Y.M. Jiang, and J. Li, Effect of surface mechanical attrition treatment on corrosion behavior of 316 stainless steel, J. Iron Steel Res. Int., 16(2009), No. 2, p. 68. doi: 10.1016/S1006-706X(09)60030-3
      [47]
      A. Fattah-Alhosseini and S. Vafaeian, Influence of grain refinement on the electrochemical behavior of AISI 430 ferritic stainless steel in an alkaline solution, Appl. Surf. Sci., 360(2016), p. 921. doi: 10.1016/j.apsusc.2015.11.085
      [48]
      T. Balusamy, S. Kumar, and T.S.N. Sankara Narayanan, Effect of surface nanocrystallization on the corrosion behaviour of AISI 409 stainless steel, Corros. Sci., 52(2010), No. 11, p. 3826. doi: 10.1016/j.corsci.2010.07.004
      [49]
      B. Zhang, Y. Li, and F.H. Wang, Electrochemical corrosion behaviour of microcrystalline aluminium in acidic solutions, Corros. Sci., 49(2007), No. 5, p. 2071. doi: 10.1016/j.corsci.2006.11.006
      [50]
      D. Song, A.B. Ma, J.H. Jiang, P.H. Lin, and J. Shi, Improving corrosion resistance of pure Al through ECAP, Corros. Eng. Sci. Technol., 46(2011), No. 4, p. 505. doi: 10.1179/147842209X12559428167562
      [51]
      M. Eizadjou, H. Fattahi, A.K. Talachi, H.D. Manesh, K. Janghorban, and M.H. Shariat, Pitting corrosion susceptibility of ultrafine grains commercially pure aluminium produced by accumulative roll bonding process, Corros. Eng. Sci. Technol., 47(2012), No. 1, p. 19. doi: 10.1179/147842211X13094269889335
      [52]
      M. Orłowska, E. Ura-Bińczyk, L. Olejnik, and M. Lewandowska, The effect of grain size and grain boundary misorientation on the corrosion resistance of commercially pure aluminium, Corros. Sci., 148(2019), p. 57. doi: 10.1016/j.corsci.2018.11.035
      [53]
      G.Z. Meng, L.Y. Wei, T. Zhang, Y.W. Shao, F.H. Wang, C.F. Dong, and X.G. Li, Effect of microcrystallization on pitting corrosion of pure aluminium, Corros. Sci., 51(2009), No. 9, p. 2151. doi: 10.1016/j.corsci.2009.05.046
      [54]
      K.S. Ghosh, N. Gao, and M.J. Starink, Characterisation of high pressure torsion processed 7150 Al-Zn-Mg-Cu alloy, Mater. Sci. Eng. A, 552(2012), p. 164. doi: 10.1016/j.msea.2012.05.026
      [55]
      D. Song, A.B. Ma, J.H. Jiang, P.H. Lin, D.H. Yang, and J.F. Fan, Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing, Corros. Sci., 53(2011), No. 1, p. 362. doi: 10.1016/j.corsci.2010.09.044
      [56]
      Y.C. Wan, S.Y. Xu, C.M. Liu, Y.H. Gao, S.N. Jiang, and Z.Y. Chen, Enhanced strength and corrosion resistance of Mg-Gd-Y-Zr alloy with ultrafine grains, Mater. Lett., 213(2018), p. 274. doi: 10.1016/j.matlet.2017.11.096
      [57]
      H. Miyamoto, K. Harada, T. Mimaki, A. Vinogradov, and S. Hashimoto, Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing, Corros. Sci., 50(2008), No. 5, p. 1215. doi: 10.1016/j.corsci.2008.01.024
      [58]
      D.S. Yang, Y.C. Dong, H. Chang, I. Alexandrov, F. Li, J.T. Wang, and Z.H. Dan, Corrosion behavior of ultrafine-grained copper processed by equal channel angular pressing in simulated sea water, Mater. Corros., 69(2018), No. 10, p. 1455. doi: 10.1002/maco.201810165
      [59]
      Y.H. Jang, S.S. Kim, S.Z. Han, C.Y. Lim, and C.J. Kim, Corrosion and stress corrosion cracking behavior of equal channel angular pressed oxygen-free copper in 3.5% NaCl solution, J. Mater. Sci., 41(2006), No. 13, p. 4293. doi: 10.1007/s10853-006-6992-y
      [60]
      S.L. Wang, Z.Y. Zhang, Y.B. Gong, and G.M. Nie, Microstructures and corrosion resistance of Fe-based amorphous/nanocrystalline coating fabricated by laser cladding, J. Alloys Compd., 728(2017), p. 1116. doi: 10.1016/j.jallcom.2017.08.251
      [61]
      P.K. Rai, S. Shekhar, and K. Mondal, Development of gradient microstructure in mild steel and grain size dependence of its electrochemical response, Corros. Sci., 138(2018), p. 85. doi: 10.1016/j.corsci.2018.04.009
      [62]
      D.E. Williams, R.C. Newman, Q. Song, and R.G. Kelly, Passivity breakdown and pitting corrosion of binary alloys, Nature, 350(1991), No. 6315, p. 216. doi: 10.1038/350216a0
      [63]
      A. Abbasi Aghuy, M. Zakeri, M.H. Moayed, and M. Mazinani, Effect of grain size on pitting corrosion of 304L austenitic stainless steel, Corros. Sci., 94(2015), p. 368. doi: 10.1016/j.corsci.2015.02.024
      [64]
      Y. Li, T. Zhang, and F.H. Wang, Effect of microcrystallization on corrosion resistance of AZ91D alloy, Electrochim. Acta, 51(2006), No. 14, p. 2845. doi: 10.1016/j.electacta.2005.08.023
      [65]
      M.K. Chung, Y.S. Choi, J.G. Kim, Y.M. Kim, and J.C. Lee, Effect of the number of ECAP pass time on the electrochemical properties of 1050 Al alloys, Mater. Sci. Eng. A, 366(2004), No. 2, p. 282. doi: 10.1016/j.msea.2003.08.056
      [66]
      M.F. Naeini, M.H. Shariat, and M. Eizadjou, On the chloride-induced pitting of ultra fine grains 5052 aluminum alloy produced by accumulative roll bonding process, J. Alloys Compd., 509(2011), No. 14, p. 4696. doi: 10.1016/j.jallcom.2011.01.066
      [67]
      H. Zhang, D. Wang, P. Xue, L.H. Wu, D.R. Ni, and Z.Y. Ma, Microstructural evolution and pitting corrosion behavior of friction stir welded joint of high nitrogen stainless steel, Mater. Des., 110(2016), p. 802. doi: 10.1016/j.matdes.2016.08.048
      [68]
      O. Jilani, N. Njah, and P. Ponthiaux, Transition from intergranular to pitting corrosion in fine grained aluminum processed by equal channel angular pressing, Corros. Sci., 87(2014), p. 259. doi: 10.1016/j.corsci.2014.06.031
      [69]
      A.S. Hamada, L.P. Karjalainen, and M.C. Somani, Electrochemical corrosion behaviour of a novel submicron-grained austenitic stainless steel in an acidic NaCl solution, Mater. Sci. Eng. A, 431(2006), No. 1-2, p. 211. doi: 10.1016/j.msea.2006.05.138
      [70]
      G.Z. Meng, Y. Li, and F.H. Wang, The corrosion behavior of Fe–10Cr nanocrystalline coating, Electrochim. Acta, 51(2006), No. 20, p. 4277. doi: 10.1016/j.electacta.2005.12.015
      [71]
      R.K. Gupta, R.S. Raman, C.C. Koch, and B.S. Murty, Effect of nanocrystalline structure on the corrosion of a Fe20Cr alloy, Int. J. Electrochem. Sci., 8(2013), p. 6791.
      [72]
      W. Ye, Y. Li, and F.H. Wang, Effects of nanocrystallization on the corrosion behavior of 309 stainless steel, Electrochim. Acta, 51(2006), No. 21, p. 4426. doi: 10.1016/j.electacta.2005.12.034
      [73]
      M. Pisarek, P. Keędzierzawski, M. Janik-Czachor, and K.J. Kurzydłowski, Effect of hydrostatic extrusion on the corrosion resistance of type 316 stainless steel, Corros., 64(2008), No. 2, p. 131. doi: 10.5006/1.3280681
      [74]
      N. Winzer, A. Atrens, G.L. Song, E. Ghali, W. Dietzel, K.U. Kainer, N. Hort, and C. Blawert, A critical review of the stress corrosion cracking (SCC) of magnesium alloys, Adv. Eng. Mater., 7(2005), No. 8, p. 659. doi: 10.1002/adem.200500071
      [75]
      G.R. Argade, N. Kumar, and R.S. Mishra, Stress corrosion cracking susceptibility of ultrafine grained Al–Mg–Sc alloy, Mater. Sci. Eng. A, 565(2013), p. 80. doi: 10.1016/j.msea.2012.11.066
      [76]
      G.R. Argade, W. Yuan, K. Kandasamy, and R.S. Mishra, Stress corrosion cracking susceptibility of ultrafine grained AZ31, J. Mater. Sci., 47(2012), No. 19, p. 6812. doi: 10.1007/s10853-012-6625-6
      [77]
      Z.M. Lu, L.M. Shi, S.J. Zhu, Z.D. Tang, and Y.Z. Jiang, Effect of high energy shot peening pressure on the stress corrosion cracking of the weld joint of 304 austenitic stainless steel, Mater. Sci. Eng. A, 637(2015), p. 170. doi: 10.1016/j.msea.2015.03.088
      [78]
      Y. Deng, B. Peng, G.F. Xu, Q.L. Pan, R. Ye, Y.J. Wang, L.Y. Lu, and Z.M. Yin, Stress corrosion cracking of a high-strength friction-stir-welded joint of an Al–Zn–Mg–Zr alloy containing 0.25 wt.% Sc, Corros. Sci., 100(2015), p. 57. doi: 10.1016/j.corsci.2015.06.031
      [79]
      M.M. Sharma and C.W. Ziemian, Pitting and stress corrosion cracking susceptibility of nanostructured Al-Mg alloys in natural and artificial environments, J. Mater. Eng. Perform., 17(2008), No. 6, p. 870. doi: 10.1007/s11665-008-9215-7
      [80]
      J.T. Wang, Y.K. Zhang, J.F. Chen, J.Y. Zhou, M.Z. Ge, Y.L. Lu, and X.L. Li, Effects of laser shock peening on stress corrosion behavior of 7075 aluminum alloy laser welded joints, Mater. Sci. Eng. A, 647(2015), p. 7. doi: 10.1016/j.msea.2015.08.084
      [81]
      Y. Yang, X.L. Lian, K. Zhou, and G.J. Li, Effects of laser shock peening on microstructures and properties of 2195 Al-Li alloy, J. Alloys Compd., 781(2019), p. 330. doi: 10.1016/j.jallcom.2018.12.118
      [82]
      T. Yamasaki, H. Miyamoto, T. Mimaki, A. Vinogradov, and S. Hashimoto, Stress corrosion cracking susceptibility of ultra-fine grain copper produced by equal-channel angular pressing, Mater. Sci. Eng. A, 318(2001), No. 1-2, p. 122. doi: 10.1016/S0921-5093(01)01332-6
      [83]
      T. Bai, P. Chen, and K.S. Guan, Evaluation of stress corrosion cracking susceptibility of stainless steel 304L with surface nanocrystallization by small punch test, Mater. Sci. Eng. A, 561(2013), p. 498. doi: 10.1016/j.msea.2012.10.071
      [84]
      S. Ghosh and V. Kain, Microstructural changes in AISI 304L stainless steel due to surface machining: Effect on its susceptibility to chloride stress corrosion cracking, J. Nucl. Mater., 403(2010), No. 1-3, p. 62. doi: 10.1016/j.jnucmat.2010.05.028
      [85]
      J.Z. Lu, K.Y. Luo, D.K. Yang, X.N. Cheng, J.L. Hu, F.Z. Dai, H. Qi, L. Zhang, J.S. Zhong, Q.W. Wang, and Y.K. Zhang, Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel, Corros. Sci., 60(2012), p. 145. doi: 10.1016/j.corsci.2012.03.044
      [86]
      F. Wang, X. Tian, Q. Li, L. Li, and X. Peng, Oxidation and hot corrosion behavior of sputtered nanocrystalline coating of superalloy K52, Thin Solid Films, 516(2008), No. 16, p. 5740. doi: 10.1016/j.tsf.2007.07.131
      [87]
      Z.P. Tong, X.D. Ren, Y.P. Ren, F.Z. Dai, Y.X. Ye, W.F. Zhou, L. Chen, and Z. Ye, Effect of laser shock peening on microstructure and hot corrosion of TC11 alloy, Surf. Coat. Technol., 335(2018), p. 32. doi: 10.1016/j.surfcoat.2017.12.003
      [88]
      X. Peng, J. Yan, Y. Zhou, and F. Wang, Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air, Acta Mater., 53(2005), No. 19, p. 5079. doi: 10.1016/j.actamat.2005.07.019
      [89]
      Z. Huang, X. Peng, C. Xu, and F. Wang, Effect of alloy nanocrystallization and Cr distribution on the development of a chromia scale, J. Electrochem. Soc., 156(2009), No. 3, p. C95. doi: 10.1149/1.3049345
      [90]
      S. Benafia, D. Retraint, S. Yapi Brou, B. Panicaud, and J.L. Grosseau Poussard, Influence of Surface Mechanical Attrition Treatment on the oxidation behaviour of 316L stainless steel, Corros. Sci., 136(2018), p. 188. doi: 10.1016/j.corsci.2018.03.007
      [91]
      X. Peng, Nanoscale assembly of high-temperature oxidation-resistant nanocomposites, Nanoscale, 2(2010), No. 2, p. 262. doi: 10.1039/B9NR00118B
      [92]
      B.V. Mahesh and R.K.S. Raman, Role of nanostructure in electrochemical corrosion and high temperature oxidation: A review, Metall. Mater. Trans. A, 45(2014), No. 12, p. 5799. doi: 10.1007/s11661-014-2452-5
      [93]
      S.G. Wang, M. Sun, H.B. Han, K. Long, and Z.D. Zhang, The high-temperature oxidation of bulk nanocrystalline 304 stainless steel in air, Corros. Sci., 72(2013), p. 64. doi: 10.1016/j.corsci.2013.03.008
      [94]
      Y.L. Wang, Q. Wang, H.J. Liu, and C.L. Zeng, Effect of grain refinement on the corrosion of Ni-Cr alloys in molten (Li. Na, K)F, Corros. Sci., 109(2016), p. 43. doi: 10.1016/j.corsci.2016.03.027
      [95]
      S.G. Wang, M. Sun, S.Y. Liu, X. Liu, Y.H. Xu, C.B. Gong, K. Long, and Z.D. Zhang, Synchronous optimization of strengths, ductility and corrosion resistances of bulk nanocrystalline 304 stainless steel, J. Mater. Sci. Technol., 37(2020), p. 161. doi: 10.1016/j.jmst.2019.05.073
      [96]
      A. Sotniczuk, D. Kuczyńska-Zemła, A. Królikowski, and H. Garbacz, Enhancement of the corrosion resistance and mechanical properties of nanocrystalline titanium by low-temperature annealing, Corros. Sci., 147(2019), p. 342. doi: 10.1016/j.corsci.2018.11.016
      [97]
      D. Song, A.B. Ma, J.H. Jiang, P.H. Lin, and L.Y. Zhang, Improvement of pitting corrosion resistance for Al-Cu alloy in sodium chloride solution through equal-channel angular pressing, Prog. Nat. Sci.: Mater. Int., 21(2011), No. 4, p. 307. doi: 10.1016/S1002-0071(12)60062-8
      [98]
      M. Abdulstaar, M. Mhaede, L. Wagner, and M. Wollmann, Corrosion behaviour of Al1050 severely deformed by rotary swaging, Mater. Des., 57(2014), p. 325. doi: 10.1016/j.matdes.2014.01.005
      [99]
      W. Wei, K.X. Wei, and Q.B. Du, Corrosion and tensile behaviors of ultra-fine grained Al–Mn alloy produced by accumulative roll bonding, Mater. Sci. Eng. A, 454-455(2007), p. 536. doi: 10.1016/j.msea.2006.11.063
      [100]
      K.D. Ralston, N. Birbilis, M.K. Cavanaugh, M. Weyland, B.C. Muddle, and R.K.W. Marceau, Role of nanostructure in pitting of Al–Cu–Mg alloys, Electrochim. Acta, 55(2010), No. 27, p. 7834. doi: 10.1016/j.electacta.2010.02.001
      [101]
      M. Eskandari, M. Yeganeh, and M. Motamedi, Investigation in the corrosion behaviour of bulk nanocrystalline 316L austenitic stainless steel in NaCl solution, Micro Nano Lett., 7(2012), No. 4, p. 380. doi: 10.1049/mnl.2012.0162
      [102]
      Z. Pu, G.L. Song, S. Yang, J.C. Outeiro, O.W. Dillon Jr, D.A. Puleo, and I.S. Jawahir, Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy, Corros. Sci., 57(2012), p. 192. doi: 10.1016/j.corsci.2011.12.018
      [103]
      W.T. Huo, W. Zhang, J.W. Lu, and Y.S. Zhang, Simultaneously enhanced strength and corrosion resistance of Mg–3Al–1Zn alloy sheets with nano-grained surface layer produced by sliding friction treatment, J. Alloys Compd., 720(2017), p. 324. doi: 10.1016/j.jallcom.2017.05.258
      [104]
      H.S. Kim and W.J. Kim, Enhanced corrosion resistance of ultrafine-grained AZ61 alloy containing very fine particles of Mg17Al12 phase, Corros. Sci., 75(2013), p. 228. doi: 10.1016/j.corsci.2013.05.032
      [105]
      X.Y. Wang and D.Y. Li, Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel, Electrochim. Acta, 47(2002), No. 24, p. 3939. doi: 10.1016/S0013-4686(02)00365-1
      [106]
      R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., 51(2006), No. 7, p. 881. doi: 10.1016/j.pmatsci.2006.02.003
      [107]
      G.L. Song, R. Mishra, and Z.Q. Xu, Crystallographic orientation and electrochemical activity of AZ31 Mg alloy, Electrochem. Commun., 12(2010), No. 8, p. 1009. doi: 10.1016/j.elecom.2010.05.011
      [108]
      A. Shahryari, J.A. Szpunar, and S. Omanovic, The influence of crystallographic orientation distribution on 316LVM stainless steel pitting behavior, Corros. Sci., 51(2009), No. 3, p. 677. doi: 10.1016/j.corsci.2008.12.019
      [109]
      N.N. Aung and W. Zhou, Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy, Corros. Sci., 52(2010), No. 2, p. 589. doi: 10.1016/j.corsci.2009.10.018
      [110]
      D. Song, A.B. Ma, J.H. Jiang, P.H. Lin, D.H. Yang, and J.F. Fan, Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution, Corros. Sci., 52(2010), No. 2, p. 481. doi: 10.1016/j.corsci.2009.10.004
      [111]
      M. Liu, D. Qiu, M.C. Zhao, G.L. Song, and A. Atrens, The effect of crystallographic orientation on the active corrosion of pure magnesium, Scr. Mater., 58(2008), No. 5, p. 421. doi: 10.1016/j.scriptamat.2007.10.027
      [112]
      B. Denkena and A. Lucas, Biocompatible magnesium alloys as absorbable implant materials – Aadjusted surface and subsurface properties by machining processes, CIRP Ann., 56(2007), No. 1, p. 113. doi: 10.1016/j.cirp.2007.05.029
      [113]
      A. Turnbull, K. Mingard, J.D. Lord, B. Roebuck, D.R. Tice, K.J. Mottershead, N.D. Fairweather, and A.K. Bradbury, Sensitivity of stress corrosion cracking of stainless steel to surface machining and grinding procedure, Corros. Sci., 53(2011), No. 10, p. 3398. doi: 10.1016/j.corsci.2011.06.020
      [114]
      D. Song, A.B. Ma, J.H. Jiang, P.H. Lin, and D.H. Yang, Corrosion behavior of ultra-fine grained industrial pure Al fabricated by ECAP, Trans. Nonferrous Met. Soc. China, 19(2009), No. 5, p. 1065. doi: 10.1016/S1003-6326(08)60407-0
      [115]
      J.G. Brunner, J. May, H.W. Höppel, M Göken, and S. Virtanen, Localized corrosion of ultrafine-grained Al–Mg model alloys, Electrochim. Acta, 55(2010), No. 6, p. 1966. doi: 10.1016/j.electacta.2009.11.016
      [116]
      A. Korchef and A. Kahoul, Corrosion behavior of commercial aluminum alloy processed by equal channel angular pressing, Int. J. Corros., 2013(2013), p. 1.

    Catalog


    • /

      返回文章
      返回