留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 9
Sep.  2022

图(12)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  246
  • HTML全文浏览量:  142
  • PDF下载量:  9
  • 被引次数: 0
Yanping Li, Xue Bian, Xun Jin, Peng Cen, Wenyuan Wu, and Gaofeng Fu, Characterization and ultraviolet–visible shielding property of samarium–cerium compounds containing Sm2O2S prepared by co-precipitation method, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1809-1816. https://doi.org/10.1007/s12613-021-2309-z
Cite this article as:
Yanping Li, Xue Bian, Xun Jin, Peng Cen, Wenyuan Wu, and Gaofeng Fu, Characterization and ultraviolet–visible shielding property of samarium–cerium compounds containing Sm2O2S prepared by co-precipitation method, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1809-1816. https://doi.org/10.1007/s12613-021-2309-z
引用本文 PDF XML SpringerLink
研究论文

共沉淀法制备的含Sm2O2S钐铈复合物的表征及紫外–可见光屏蔽性能

  • 通讯作者:

    边雪    E-mail: bianx@smm.neu.edu.cn

文章亮点

  • (1)系统地研究了pH值对钐铈复合物组成的影响规律。
  • (2)制备了具有优异紫外–可见光屏蔽性能的钐铈复合物并研究了其光屏蔽机理。
  • (3)总结了钐铈复合物比氧化铈具备更优异的紫外–可见光屏蔽性能的原因。
  • 氧化铈是一种应用比较广泛的无机紫外屏蔽剂,但是太阳光中的成分不只是紫外线会对人体产生伤害,400–450 nm之间的高能短波蓝光也会对人的皮肤或者眼睛产生一定的伤害,所以,本文旨在制备一种既能屏蔽紫外光又能屏蔽高能短波蓝光的光屏蔽剂。本文通过共沉淀法合成了含有Sm2O2S的钐铈复合物。 这种复合物不仅可以阻挡紫外光,还可以阻挡蓝光。钐铈复合物的平均透射率(360–450 nm)和禁带宽度最小值分别为8.90%和2.76 eV,低于CeO2的13.96%和3.01 eV。元素分析 (EA)、X 射线衍射 (XRD)、傅里叶变换红外光谱(FTIR)和拉曼光谱(Raman)确定了实验中制备的钐铈复合物样品由Ce4O7、Sm2O2S、Sm2O3和Sm2O2SO4组成。通过扫描和透射电子显微镜(SEM和TEM)分析了钐铈复合物样品的微观结构。 X射线光电子能谱(XPS)表明,铈元素具有Ce3+和Ce4+两种价态,氧元素具有晶格氧和氧空位两种存在形式。Sm3+和Ce3+在氧化铈晶格中的掺杂以及氧空位的存在是导致钐铈复合物具有较小的禁带宽度以及优异的紫外–可见光屏蔽性能的重要原因。
  • Research Article

    Characterization and ultraviolet–visible shielding property of samarium–cerium compounds containing Sm2O2S prepared by co-precipitation method

    + Author Affiliations
    • Since ultraviolet (UV) light, as well as blue light, which is part of visible light, is harmful to skin, samarium–cerium compounds containing Sm2O2S were synthesized by co-precipitation method. This kind of compounds blocks not only UV light, but also blue light. The minimum values of average transmittance (360–450 nm) and band gap of samarium–cerium compounds were 8.90% and 2.76 eV, respectively, which were less than 13.96% and 3.01 eV of CeO2. Elemental analysis (EA), X-ray diffraction (XRD), Fourier transformation infrared (FTIR), and Raman spectra determined that the samples contained Ce4O7, Sm2O2S, Sm2O3, and Sm2O2SO4. The microstructure of samples was analyzed by scanning and transmission electron microscopies (SEM and TEM). X-ray photoelectron spectrum (XPS) showed that cerium had Ce3+ and Ce4+ valence states, and oxygen was divided into lattice oxygen and oxygen vacancy, which was the direct cause of the decrease of average transmittance and band gap.
    • loading
    • [1]
      M. Montazer, E. Pakdel, and M.B. Moghadam, Nano titanium dioxide on wool keratin as UV absorber stabilized by butane tetra carboxylic acid (BTCA): A statistical prospect, Fibers Polym., 11(2010), No. 7, p. 967. doi: 10.1007/s12221-010-0967-y
      [2]
      K. Lim, W.S. Chow, and S.Y. Pung, Enhancement of thermal stability and UV resistance of halloysite nanotubes using zinc oxide functionalization via a solvent-free approach, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 787. doi: 10.1007/s12613-019-1781-1
      [3]
      S. Gangopadhyay, D.D. Frolov, A.E. Masunov, and S. Seal, Structure and properties of cerium oxides in bulk and nanoparticulate forms, J. Alloys Compd., 584(2014), p. 199. doi: 10.1016/j.jallcom.2013.09.013
      [4]
      S.S. Zhang, J. Li, X.P. Guo, L.H. Liu, H. Wei, and Y.W. Zhang, Nanostructured composite films of ceria nanoparticles with anti-UV and scratch protection properties constructed using a layer-by-layer strategy, Appl. Surf. Sci., 382(2016), p. 316. doi: 10.1016/j.apsusc.2016.04.151
      [5]
      C.W. Sun, H. Li, H.R. Zhang, Z.X. Wang, and L.Q. Chen, Controlled synthesis of CeO2 nanorods by a solvothermal method, Nanotechnology, 16(2005), No. 9, p. 1454. doi: 10.1088/0957-4484/16/9/006
      [6]
      T. Pirmohamed, J.M. Dowding, S. Singh, B. Wasserman, E. Heckert, A.S. Karakoti, J.E.S. King, S. Seal, and W.T. Self, Nanoceria exhibit redox state-dependent catalase mimetic activity, Chem. Commun., 46(2010), No. 16, p. 2737.
      [7]
      A.B. Shcherbakov, N.M. Zholobak, V.K. Ivanov, O.S. Ivanova, A.V. Marchevsky, A.E. Baranchikov, N.Y. Spivak, and Y.D. Tretyakov, Synthesis and antioxidant activity of biocompatible maltodextrin-stabilized aqueous sols of nanocrystalline ceria, Russ. J. Inorg. Chem., 57(2012), No. 11, p. 1411. doi: 10.1134/s0036023612110137
      [8]
      X.C. Dai, Z.M. Tang, Y.H. Ju, N. Ni, H.Q. Gao, J.J. Wang, L.Q. Yin, A.L. Liu, S.J. Weng, J.H. Zhang, J. Zhang, and P. Gu, Effects of blue light-exposed retinal pigment epithelial cells on the process of ametropia, Biochem. Biophys. Res. Commun., 549(2021), p. 14. doi: 10.1016/j.bbrc.2021.02.089
      [9]
      I. Dumitrescu, O.G. Iordache, C.E. Mitran, E. Perdum, I.M. Săndulache, L.O. Secăreanu, L.C. Dincă, A. Sobetkii, and L. Diamandescu, Attempts to improve the self-cleaning effect of the textile materials, Ind. Textilă, 71(2020), No. 3, p. 252. doi: 10.35530/it.071.03.1626
      [10]
      L.N. Chi, Y.J. Qian, J.Q. Guo, X.Z. Wang, H. Arandiyan, and Z. Jiang, Novel g-C3N4/TiO2/PAA/PTFE ultrafiltration membrane enabling enhanced antifouling and exceptional visible-light photocatalytic self-cleaning, Catal. Today, 335(2019), p. 527. doi: 10.1016/j.cattod.2019.02.027
      [11]
      K.S. Su, Y.Y. Tao, and J. Zhang, Highly transparent plasticized PVC composite film with ideal ultraviolet/high-energy short-wavelength blue light shielding, J. Mater. Sci., 56(2021), No. 30, p. 17353. doi: 10.1007/s10853-021-06408-w
      [12]
      M.R. Hamblin, Fullerenes as photosensitizers in photodynamic therapy: Pros and cons, Photochem. Photobiol. Sci., 17(2018), No. 11, p. 1515. doi: 10.1039/C8PP00195Bhttp://dx.doi.org/10.1016/j.bbrc.2021.02.089
      [13]
      A.M. Pires, O.A. Serra, and M.R. Davolos, Yttrium oxysulfide nanosized spherical particles doped with Yb and Er or Yb and Tm: Efficient materials for up-converting phosphor technology field, J. Alloys Compd., 374(2004), No. 1-2, p. 181. doi: 10.1016/j.jallcom.2003.11.088http://dx.doi.org/10.1016/j.jallcom.2003.11.088
      [14]
      P.D. Han, X.G. Huang, and Q.T. Zhang, Laser stealth absorbent of samarium oxysulfide prepared by flux method, Rare Met., 30(2011), No. 6, p. 616. doi: 10.1007/s12598-011-0438-7
      [15]
      Y.P. Li, X. Bian, Y. Liu, W.Y. Wu, and G.F. Fu, Synthesis and characterization of ceria nanoparticles by complex-precipitation route, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 292. doi: 10.1007/s12613-020-2126-9http://dx.doi.org/10.1007/s12598-011-0438-7
      [16]
      E. Matijević and W.P. Hsu, Preparation and properties of monodispersed colloidal particles of lanthanide compounds: I. Gadolinium, europium, terbium, samarium, and cerium(III), J. Colloid Interface Sci., 118(1987), No. 2, p. 506. doi: 10.1016/0021-9797(87)90486-3
      [17]
      A. Verma, N. Karar, A.K. Bakhshi, H. Chander, S.M. Shivaprasad, and S.A. Agnihotry, Structural, morphological and photoluminescence characteristics of sol–gel derived nano phase CeO2 films deposited using citric acid, J. Nanopart. Res., 9(2007), No. 2, p. 317. doi: 10.1007/s11051-006-9085-6
      [18]
      L.X. Yin, Y.Q. Wang, G.S. Pang, Y. Koltypin, and A. Gedanken, Sonochemical synthesis of cerium oxide nanoparticles-effect of additives and quantum size effect, J. Colloid Interface Sci., 246(2002), No. 1, p. 78. doi: 10.1006/jcis.2001.8047
      [19]
      D.S. Zhang, H.X. Fu, L.Y. Shi, C.S. Pan, Q. Li, Y.L. Chu, and W.J. Yu, Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol, Inorg. Chem., 46(2007), No. 7, p. 2446. doi: 10.1021/ic061697d
      [20]
      Y.C. Zhou, R.J. Phillips, and J.A. Switzer, Electrochemical synthesis and sintering of nanocrystalline cerium(IV) oxide powders, J. Am. Ceram. Soc., 78(1995), No. 4, p. 981. doi: 10.1111/j.1151-2916.1995.tb08425.x
      [21]
      J. Wang, W. Zeng, and Z.C. Wang, Assembly of 2D nanosheets into 3D flower-like NiO: Synthesis and the influence of petal thickness on gas-sensing properties, Ceram. Int., 42(2016), No. 3, p. 4567. doi: 10.1016/j.ceramint.2015.11.150
      [22]
      Y. Chen, T.M. Liu, C.L. Chen, W.W. Guo, R. Sun, S.H. Lv, M. Saito, S. Tsukimoto, and Z.C. Wang, Synthesis and characterization of CeO2 nano-rods, Ceram. Int., 39(2013), No. 6, p. 6607. doi: 10.1016/j.ceramint.2013.01.096
      [23]
      Y. Chen, S.H. Lv, C.L. Chen, C.J. Qiu, X.F. Fan, and Z.C. Wang, Controllable synthesis of ceria nanoparticles with uniform reactive {100} exposure planes, J. Phys. Chem. C, 118(2014), No. 8, p. 4437. doi: 10.1021/jp410625n
      [24]
      M.L. Zhang, Y. Chen, C.J. Qiu, X.F. Fan, C.L. Chen, and Z.C. Wang, Synthesis and atomic-scale characterization of CeO2 nano-octahedrons, Physica E, 64(2014), p. 218. doi: 10.1016/j.physe.2014.08.002
      [25]
      Y. Chen, T.M. Liu, C.L. Chen, W.W. Guo, R. Sun, S.H. Lv, M. Saito, S. Tsukimoto, and Z.C. Wang, Hydrothermal synthesis of ceria hybrid architectures of nano-rods and nano-octahedrons, Mater. Lett., 96(2013), p. 210. doi: 10.1016/j.matlet.2013.01.069
      [26]
      Y. Chen, C.J. Qiu, C.L. Chen, X.F. Fan, S.B. Xu, W.W. Guo, and Z.C. Wang, Facile synthesis of ceria nanospheres by Ce(OH)CO3 precursors, Mater. Lett., 122(2014), p. 90. doi: 10.1016/j.matlet.2014.01.178
      [27]
      P.F. Hu, Y. Chen, R. Sun, Y. Chen, Y.R. Yin, and Z.C. Wang, Synthesis, characterization and frictional wear behavior of ceria hybrid architectures with {111} exposure planes, Appl. Surf. Sci., 401(2017), p. 100. doi: 10.1016/j.apsusc.2017.01.005
      [28]
      C.L. Lo, J.G. Duh, B.S. Chiou, C.C. Peng, and L. Ozawa, Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method, Mater. Chem. Phys., 71(2001), No. 2, p. 179. doi: 10.1016/S0254-0584(01)00279-6
      [29]
      Y.H. Tseng, B.S. Chiou, C.C. Peng, and L. Ozawa, Spectral properties of Eu3+-activated yttrium oxysulfide red phosphor, Thin Solid Films, 330(1998), No. 2, p. 173. doi: 10.1016/S0040-6090(98)00549-5
      [30]
      Y.J. Ding, L.X. Wang, Q.T. Zhang, and S.B. Pan, Enhanced luminescence of La3+-doped gadolinium oxysulfide with tunable crystalline size, J. Electron. Mater., 46(2017), No. 10, p. 5986. doi: 10.1007/s11664-017-5570-1
      [31]
      B.F. Lei, Y.L. Liu, G.B. Tang, Z.R. Ye, and C.S. Shi, Unusual afterglow properties of Tm3+ doped yttrium oxysulfide, Chem. Res. Chin. Univ., 24(2003), No. 5, p. 782.
      [32]
      A. Ishikawa, Y. Yamada, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, and K. Domen, Novel synthesis and photocatalytic activity of oxysulfide Sm2Ti2S2O5, Chem. Mater., 15(2003), No. 23, p. 4442. doi: 10.1021/cm034540h
      [33]
      A.N. Georgobiani, A.A. Bogatyreva, V.M. Ishchenko, O.Y. Manashirov, V.B. Gutan, and S.V. Semendyaev, A new multifunctional phosphor based on yttrium oxysulfide, Inorg. Mater., 43(2007), No. 10, p. 1073. doi: 10.1134/s0020168507100093
      [34]
      S. Altmannshofer and D. Johrendt, Synthesis, crystal structure and magnetism of the new oxysulfide Ce3NbO4S3, Z. Anorg. Allg. Chem., 634(2008), No. 8, p. 1361. doi: 10.1002/zaac.200800078
      [35]
      F. Zhao, M. Yuan, W. Zhang, and S. Gao, Monodisperse lanthanide oxysulfide nanocrystals, J. Am. Chem. Soc., 128(2006), No. 36, p. 11758. doi: 10.1021/ja0638410
      [36]
      R.V. Rodrigues, L.C. Machado, J.R. Matos, E.J.B. Muri, A.A.L. Marins, H.F. Brito, and C.A.C. Passos, Oxysulfate/oxysulfide of Tb3+ obtained by thermal decomposition of terbium sulfate hydrates under different atmospheres, J. Therm. Anal. Calorim., 122(2015), No. 2, p. 765. doi: 10.1007/s10973-015-4786-7
      [37]
      T. Hirai and T. Orikoshi, Preparation of Gd2O3: Yb, Er and Gd2O2S: Yb, Er infrared-to-visible conversion phosphor ultrafine particles using an emulsion liquid membrane system, J. Colloid Interface Sci., 269(2004), No. 1, p. 103. doi: 10.1016/j.jcis.2003.08.026
      [38]
      J. Thirumalai, R. Chandramohan, S. Auluck, T. Mahalingam, and S.R. Srikumar, Controlled synthesis, optical and electronic properties of Eu3+ doped yttrium oxysulfide (Y2O2S) nanostructures, J. Colloid Interface Sci., 336(2009), No. 2, p. 889. doi: 10.1016/j.jcis.2009.04.042
      [39]
      J.B. Lian, X.D. Sun, J.G. Li, and X.D. Li, Synthesis, characterization and photoluminescence properties of (Gd0.99, Pr0.01)2O2S sub-microphosphor by homogeneous precipitation method, Opt. Mater., 33(2011), No. 4, p. 596. doi: 10.1016/j.optmat.2010.11.005
      [40]
      J. Cichos, M. Karbowiak, D. Hreniak, and W. Stręk, Synthesis and characterization of monodisperse Eu3+ doped gadolinium oxysulfide nanocrystals, J. Rare Earths, 34(2016), No. 8, p. 850. doi: 10.1016/S1002-0721(16)60105-9
      [41]
      K. Ueda, S. Inoue, S. Hirose, H. Kawazoe, and H. Hosono, Transparent p-type semiconductor: LaCuOS layered oxysulfide, Appl. Phys. Lett., 77(2000), No. 17, p. 2701. doi: 10.1063/1.1319507
      [42]
      J. Dhanaraj, M. Geethalakshmi, R. Jagannathan, and T.R.N. Kutty, Eu3+ doped yttrium oxysulfide nanocrystals–crystallite size and luminescence transition(s), Chem. Phys. Lett., 387(2004), No. 1-3, p. 23. doi: 10.1016/j.cplett.2004.01.079
      [43]
      V.V. Bakovets, T.M. Levashova, I.Y. Filatova, E.A. Maksimovskii, and A.E. Kupcha, Vapor phase growth of nanostructured yttrium oxysulfide films, Inorg. Mater., 44(2008), No. 1, p. 67. doi: 10.1134/S0020168508010111
      [44]
      J. Tauc, R. Grigorovici, and A. Vancu, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi B, 15(1966), No. 2, p. 627. doi: 10.1002/pssb.19660150224
      [45]
      E.A. Davis and N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Philos. Mag., 22(1970), No. 179, p. 0903. doi: 10.1080/14786437008221061
      [46]
      B.C. Qiu, C. Wang, N. Zhang, L.J. Cai, Y.J. Xiong, and Y. Chai, CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation, ACS Catal., 9(2019), No. 7, p. 6484. doi: 10.1021/acscatal.9b01819

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

    • /

      返回文章
      返回