留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 9
Sep.  2022

图(12)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  627
  • HTML全文浏览量:  321
  • PDF下载量:  40
  • 被引次数: 0
Bo Feng, Liangzhu Zhang, Wenpu Zhang, Huihui Wang, and Zhiyong Gao, Mechanism of calcium lignosulfonate in apatite and dolomite flotation system, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1697-1704. https://doi.org/10.1007/s12613-021-2313-3
Cite this article as:
Bo Feng, Liangzhu Zhang, Wenpu Zhang, Huihui Wang, and Zhiyong Gao, Mechanism of calcium lignosulfonate in apatite and dolomite flotation system, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1697-1704. https://doi.org/10.1007/s12613-021-2313-3
引用本文 PDF XML SpringerLink
研究论文

木质素磺酸钙在磷灰石和白云石浮选体系中的作用机理

  • 通讯作者:

    冯博    E-mail: fengbo319@163.com

文章亮点

  • (1) 研究了木质素磺酸钙对磷灰石和白云石浮选分离的影响。
  • (2) 白云石表面对木质素磺酸钙的吸附量大于磷灰石。
  • (3) 木质素磺酸钙能强烈地抑制白云石。
  • 由于磷灰石和白云石的物理化学性质相似,这两种矿物的分离比较困难。因此,在使用浮选法进行这种分离时,有必要寻找选择性抑制剂。以木质素磺酸钙为抑制剂,对磷灰石和白云石的分离行为进行了试验研究,并对其分离机理进行了分析。结果表明,木质素磺酸钙对磷灰石和白云石均有抑制作用,但在相同用量下,对白云石的抑制作用更强。机理分析表明,木质素磺酸钙对白云石的吸附能力高于对磷灰石的吸附能力,这是由于木质素磺酸钙与白云石上的钙位点反应强烈所致。此外,木质素磺酸钙与白云石之间存在氢键,这进一步阻止了油酸钠对白云石的吸附,从而大大抑制了白云石的浮选。
  • Research Article

    Mechanism of calcium lignosulfonate in apatite and dolomite flotation system

    + Author Affiliations
    • Since the physical and chemical properties of apatite and dolomite can be similar, the separation of these two minerals is difficult. Therefore, when performing this separation using the flotation method, it is necessary to search for selective depressants. An experimental research was performed on the separation behavior of apatite and dolomite using calcium lignosulfonate as a depressant, and the mechanism by which this occurs was analyzed. The results show that calcium lignosulfonate has a depressant effect on both apatite and dolomite, but the depressant effect on dolomite is stronger at the same dosage. Mechanism analysis shows that the adsorptive capacity of calcium lignosulfonate on dolomite is higher than that of apatite, which is due to the strong reaction between calcium lignosulfonate and the Ca sites on dolomite. In addition, there is a hydrogen bond between calcium lignosulfonate and dolomite, which further prevents the adsorption of sodium oleate to dolomite, thus greatly inhibiting the flotation of dolomite.
    • loading
    • [1]
      J. Huang, C.C. Xu, B.G. Ridoutt, X.C. Wang, and P.N. Ren, Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China, J. Clean. Prod., 159(2017), p. 171. doi: 10.1016/j.jclepro.2017.05.008
      [2]
      Y.Y. Ruan, D.H. He, and C. Ruan, Review on beneficiation techniques and reagents used for phosphate ores, Minerals, 9(2019), No. 4, art. No. 253. doi: 10.3390/min9040253
      [3]
      L. Xiong, P. Wang, and P.M. Kopittke, Tailoring hydroxyapatite nanoparticles to increase their efficiency as phosphorus fertilisers in soils, Geoderma, 323(2018), p. 116. doi: 10.1016/j.geoderma.2018.03.002
      [4]
      P.K. Pufahl and L.A. Groat, Sedimentary and igneous phosphate deposits: Formation and exploration: An invited paper, Econ. Geol., 112(2017), No. 3, p. 483. doi: 10.2113/econgeo.112.3.483
      [5]
      W.T. Zhou, Y.X. Han, Y.S. Sun, and Y.J. Li, Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 443. doi: 10.1007/s12613-019-1897-3
      [6]
      M. Mohammadkhani, M. Noaparast, S.Z. Shafaei, A. Amini, E. Amini, and H. Abdollahi, Double reverse flotation of a very low grade sedimentary phosphate rock, rich in carbonate and silicate, Int. J. Miner. Process., 100(2011), No. 3-4, p. 157. doi: 10.1016/j.minpro.2011.06.001
      [7]
      R.B. Chowdhury, G.A. Moore, A.J. Weatherley, and M. Arora, A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales, Resour. Conserv. Recycl., 83(2014), p. 213. doi: 10.1016/j.resconrec.2013.10.014
      [8]
      D.H. Hoang, N. Kupka, U.A. Peuker, and M. Rudolph, Flotation study of fine grained carbonaceous sedimentary apatite ore—Challenges in process mineralogy and impact of hydrodynamics, Miner. Eng., 121(2018), p. 196. doi: 10.1016/j.mineng.2018.03.021
      [9]
      W.Z. Yin and Y. Tang, Interactive effect of minerals on complex ore flotation: A brief review, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 571. doi: 10.1007/s12613-020-1999-y
      [10]
      M. Derhy, Y. Taha, R. Hakkou, and M. Benzaazoua, Review of the main factors affecting the flotation of phosphate ores, Minerals, 10(2020), No. 12, art. No. 1109. doi: 10.3390/min10121109
      [11]
      Y.F. Chen, Q.M. Feng, G.F. Zhang, D.Z. Liu, and R.Z. Liu, Effect of sodium pyrophosphate on the reverse flotation of dolomite from apatite, Minerals, 8(2018), No. 7, art. No. 278. doi: 10.3390/min8070278
      [12]
      B. Yang, Z.L. Zhu, H.R. Sun, W.Z. Yin, J. Hong, S.H. Cao, Y. Tang, C. Zhao, and J. Yao, Improving flotation separation of apatite from dolomite using PAMS as a novel eco-friendly depressant, Miner. Eng., 156(2020), art. No. 106492. doi: 10.1016/j.mineng.2020.106492
      [13]
      X. Chen, G.H. Gu, and Z.X. Chen, Seaweed glue as a novel polymer depressant for the selective separation of chalcopyrite and galena, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1495. doi: 10.1007/s12613-019-1848-z
      [14]
      Y.Y. Ruan, Z.Q. Zhang, H.H. Luo, C.Q. Xiao, F. Zhou, and R. Chi, Effects of metal ions on the flotation of apatite, dolomite and quartz, Minerals, 8(2018), No. 4, art. No. 141. doi: 10.3390/min8040141
      [15]
      H. Zou, Q.B. Cao, D.W. Liu, X.C. Yu, and H. Lai, Surface features of fluorapatite and dolomite in the reverse flotation process using sulfuric acid as a depressor, Minerals, 9(2019), No. 1, art. No. 33. doi: 10.3390/min9010033
      [16]
      J. Yu, Y.Y. Ge, X.L. Guo, and W.B. Guo, The depression effect and mechanism of NSFC on dolomite in the flotation of phosphate ore, Sep. Purif. Technol., 161(2016), p. 88. doi: 10.1016/j.seppur.2016.01.044
      [17]
      Z.C. Pan, Y.F. Wang, Q. Wei, X.T. Chen, F. Jiao, and W.Q. Qin, Effect of sodium pyrophosphate on the flotation separation of calcite from apatite, Sep. Purif. Technol., 242(2020), art. No. 116408. doi: 10.1016/j.seppur.2019.116408
      [18]
      J. Yu, Y.Y. Ge, W.B. Guo, and X.L. Guo, Flotation collophane from high-iron phosphate ore by using sodium ligninsulfonate as depressant, Sep. Sci. Technol., 52(2017), No. 3, p. 557. doi: 10.1080/01496395.2016.1260035
      [19]
      X. Liu, Y.Y. Ruan, C.X. Li, and R.J. Cheng, Effect and mechanism of phosphoric acid in the apatite/dolomite flotation system, Int. J. Miner. Process., 167(2017), p. 95. doi: 10.1016/j.minpro.2017.08.006
      [20]
      H.L. Zhu, H.B. Deng, and C. Chen, Flotation separation of andalusite from quartz using sodium petroleum sulfonate as collector, Trans. Nonferrous Met. Soc. China, 25(2015), No. 4, p. 1279. doi: 10.1016/S1003-6326(15)63726-8
      [21]
      Y.X. Pang, X.Q. Qiu, D.J. Yang, and L.H. Liu, Research on complexation property of calcium lignosulfonate, Chem. Ind. For. Prod., 24(2004), No. 4, p. 28.
      [22]
      Z.Y. Tan, Z.H. Yang, X. Ni, H.Y. Chen, and R.J. Wen, Effects of calcium lignosulfonate on the performance of zinc-nickel battery, Electrochim. Acta, 85(2012), p. 554. doi: 10.1016/j.electacta.2012.08.111
      [23]
      F.G. Calvo-Flores and J.A. Dobado, Lignin as renewable raw material, ChemSusChem, 3(2010), No. 11, p. 1227. doi: 10.1002/cssc.201000157
      [24]
      G.Y. Li, X. Hou, Y.H. Mu, W. Ma, F. Wang, Y. Zhou, and Y.C. Mao, Engineering properties of loess stabilized by a type of eco-material, calcium lignosulfonate, Arab. J. Geosci., 12(2019), No. 22, p. 1. doi: 10.1007/s12517-019-4876-0
      [25]
      B. Feng, C.H. Zhong, L.Z. Zhang, Y.T. Guo, T. Wang, and Z.Q. Huang, Effect of surface oxidation on the depression of sphalerite by locust bean gum, Miner. Eng., 146(2020), art. No. 106142. doi: 10.1016/j.mineng.2019.106142
      [26]
      W. Guo, B. Feng, J.X. Peng, W.P. Zhang, and X.W. Zhu, Depressant behavior of tragacanth gum and its role in the flotation separation of chalcopyrite from talc, J. Mater. Res. Technol., 8(2019), No. 1, p. 697. doi: 10.1016/j.jmrt.2018.05.015
      [27]
      W. Chen, Q.M. Feng, G.F. Zhang, D.Z. Liu, and L.F. Li, Selective flotation of scheelite from calcite using calcium lignosulphonate as depressant, Miner. Eng., 119(2018), p. 73. doi: 10.1016/j.mineng.2018.01.015
      [28]
      B. Feng, W. Guo, J.X. Peng, and W.P. Zhang, Separation of scheelite and calcite using calcium lignosulphonate as depressant, Sep. Purif. Technol., 199(2018), p. 346. doi: 10.1016/j.seppur.2018.02.009
      [29]
      C. Marion, A. Jordens, S. McCarthy, T. Grammatikopoulos, and K.E. Waters, An investigation into the flotation of muscovite with an amine collector and calcium lignin sulfonate depressant, Sep. Purif. Technol., 149(2015), p. 216. doi: 10.1016/j.seppur.2015.04.025
      [30]
      R.Q. Liu, W. Sun, Y.H. Hu, and D.Z. Wang, Effect of organic depressant lignosulfonate calcium on separation of chalcopyrite from pyrite, J. Cent. South Univ. Technol., 16(2009), No. 5, p. 753. doi: 10.1007/s11771-009-0125-0
      [31]
      X.D. Ma and M. Pawlik, The effect of lignosulfonates on the floatability of talc, Int. J. Miner. Process., 83(2007), No. 1-2, p. 19. doi: 10.1016/j.minpro.2007.03.007
      [32]
      B. Feng, X.P. Luo, J.Q. Wang, and P.C. Wang, The flotation separation of scheelite from calcite using acidified sodium silicate as depressant, Miner. Eng., 80(2015), p. 45. doi: 10.1016/j.mineng.2015.06.017
      [33]
      H.R. Sun, B. Yang, Z.L. Zhu, W.Z. Yin, Q.Y. Sheng, Y. Hou, and J. Yao, New insights into selective-depression mechanism of novel depressant EDTMPS on magnesite and quartz surfaces: Adsorption mechanism, DFT calculations, and adsorption model, Miner. Eng., 160(2021), art. No. 106660. doi: 10.1016/j.mineng.2020.106660
      [34]
      J.Q. Yin, Z.Q. Zou, and J. Tian, Preparation of crystalline rare earth carbonates with large particle size from the lixivium of weathered crust elution-deposited rare earth ores, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1482. doi: 10.1007/s12613-020-2066-4
      [35]
      Y.S. Wang, Y. Zuo, X.H. Zhao, and S.S. Zha, The adsorption and inhibition effect of calcium lignosulfonate on Q235 carbon steel in simulated concrete pore solution, Appl. Surf. Sci., 379(2016), p. 98. doi: 10.1016/j.apsusc.2016.04.013
      [36]
      L. Klapiszewski, J. Zietek, F. Ciesielczyk, K. Siwinska-Stefanska, and T. Jesionowski, Magnesium silicate conjugated with calcium lignosulfonate: In situ synthesis and comprehensive physicochemical evaluations, Physicochem. Probl. Miner., 54(2018), No. 3, p. 793. doi: 10.5277/ppmp1875
      [37]
      D.Z. Ye, X.C. Jiang, C. Xia, L. Liu, and X. Zhang, Graft polymers of eucalyptus lignosulfonate calcium with acrylic acid: Synthesis and characterization, Carbohydr. Polym., 89(2012), No. 3, p. 876. doi: 10.1016/j.carbpol.2012.04.024
      [38]
      K.F. Wei, W.B. Liu, X.Y. Peng, W.G. Liu, N.X. Zhang, and Z. Li, Investigating flotation behavior and mechanism of modified mineral oil in the separation of apatite ore, Physicochem. Probl. Miner. Process., 56(2020), No. 3, p. 471. doi: 10.37190/ppmp/119662
      [39]
      T. Wang, B. Feng, Y.T. Guo, W.P. Zhang, Y.B. Rao, C.H. Zhong, L.Z. Zhang, C. Cheng, H.H. Wang, and X.P. Luo, The flotation separation behavior of apatite from calcite using carboxymethyl chitosan as depressant, Miner. Eng., 159(2020), art. No. 106635. doi: 10.1016/j.mineng.2020.106635
      [40]
      C.H. Zhong, B. Feng, W.P. Zhang, L.Z. Zhang, Y.T. Guo, T. Wang, and H.H. Wang, The role of sodium alginate in the flotation separation of apatite and dolomite, Powder Technol., 373(2020), p. 620. doi: 10.1016/j.powtec.2020.07.007
      [41]
      J. Yao, H.R. Sun, X.Q. Ban, and W.Z. Yin, Analysis of selective modification of sodium dihydrogen phosphate on surfaces of magnesite and dolomite: Reverse flotation separation, adsorption mechanism, and density functional theory calculations, Colloids Surf. A, 618(2021), art. No. 126448. doi: 10.1016/j.colsurfa.2021.126448
      [42]
      D. Li, W.Z. Yin, J.W. Xue, J. Yao, Y.F. Fu, and Q. Liu, Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 736. doi: 10.1007/s12613-017-1457-7
      [43]
      M.J. Tian, R.Q. Liu, Z.Y. Gao, P. Chen, H.S. Han, L. Wang, C.Y. Zhang, W. Sun, and Y.H. Hu, Activation mechanism of Fe (III) ions in cassiterite flotation with benzohydroxamic acid collector, Miner. Eng., 119(2018), p. 31. doi: 10.1016/j.mineng.2018.01.011

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

    • /

      返回文章
      返回