摘要:
为了减少尾气排放污染和提高燃油经济性,汽车发动机排气部件的服役温度大幅提高。因此,具有较高高温强度的Nb微合金化奥氏体耐热铸钢成为当前汽车排气歧管的首选材料之一。目前,相关研究工作主要集中在合金设计与高温力学性能方面,缺乏针对900°C以上合金氧化行为及其机制的深入研究,特别是初生Nb(C,N)的影响作用。本文针对前期工作中设计的两种初生Nb(C,N)形态不同的奥氏体铸钢,并与一种具有良好综合性能的商用合金进行对比,采用扫描电子显微镜、能量色散光谱和聚焦离子束/透射电子显微镜研究了三种Nb微合金化奥氏体铸钢在950℃的等温氧化行为,分析了奥氏体耐热铸钢中氧化膜和内氧化的形成机制及其对氧化性能的影响,探讨了初生Nb(C,N)形貌对氧化性能的影响。研究结果表明,三种奥氏体铸钢的氧化动力学遵循对数规律,在氧化层/基体界面形成的连续SiO
2层可显著降低氧化速率。当局部Si浓度不足时,在氧化层/基体界面将发生内氧化,形成离散的SiO
2颗粒。由于氧化层与基体之间的失配应力减小,内氧化的发生对于冷却过程中氧化物的剥落具有一定的抑制作用。与离散的初生Nb(C,N)颗粒相比,“汉字”型初生Nb(C,N)能够为Cr原子提供高密度的快速扩散通道,有利于提高合金枝晶间的氧化抗力。此外,Cr原子在最内层和最外层的氧化层中富集,而当环境中水蒸气浓度足够高时,最外层的Cr蒸发显著。