留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 4
Apr.  2022

图(11)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  1798
  • HTML全文浏览量:  380
  • PDF下载量:  56
  • 被引次数: 0
Hailong Zhao, Longfei Li, and Qiang Feng, Isothermal oxidation behavior of Nb-bearing austenitic cast steels at 950°C, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 814-824. https://doi.org/10.1007/s12613-021-2314-2
Cite this article as:
Hailong Zhao, Longfei Li, and Qiang Feng, Isothermal oxidation behavior of Nb-bearing austenitic cast steels at 950°C, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 814-824. https://doi.org/10.1007/s12613-021-2314-2
引用本文 PDF XML SpringerLink
研究论文

Nb微合金化奥氏体铸钢950°C等温氧化行为

  • 通讯作者:

    李龙飞    E-mail: lilf@skl.ustb.edu.cn

    冯强    E-mail: qfeng@skl.ustb.edu.cn

文章亮点

  • (1) 系统地研究了Nb微合金化奥氏体耐热铸钢在950°C的等温氧化行为。
  • (2) 分析了奥氏体耐热铸钢中氧化膜及内氧化的形成机制。
  • (3) 探讨了奥氏体耐热铸钢中初生Nb(C,N)形貌对氧化性能的影响。
  • 为了减少尾气排放污染和提高燃油经济性,汽车发动机排气部件的服役温度大幅提高。因此,具有较高高温强度的Nb微合金化奥氏体耐热铸钢成为当前汽车排气歧管的首选材料之一。目前,相关研究工作主要集中在合金设计与高温力学性能方面,缺乏针对900°C以上合金氧化行为及其机制的深入研究,特别是初生Nb(C,N)的影响作用。本文针对前期工作中设计的两种初生Nb(C,N)形态不同的奥氏体铸钢,并与一种具有良好综合性能的商用合金进行对比,采用扫描电子显微镜、能量色散光谱和聚焦离子束/透射电子显微镜研究了三种Nb微合金化奥氏体铸钢在950℃的等温氧化行为,分析了奥氏体耐热铸钢中氧化膜和内氧化的形成机制及其对氧化性能的影响,探讨了初生Nb(C,N)形貌对氧化性能的影响。研究结果表明,三种奥氏体铸钢的氧化动力学遵循对数规律,在氧化层/基体界面形成的连续SiO2层可显著降低氧化速率。当局部Si浓度不足时,在氧化层/基体界面将发生内氧化,形成离散的SiO2颗粒。由于氧化层与基体之间的失配应力减小,内氧化的发生对于冷却过程中氧化物的剥落具有一定的抑制作用。与离散的初生Nb(C,N)颗粒相比,“汉字”型初生Nb(C,N)能够为Cr原子提供高密度的快速扩散通道,有利于提高合金枝晶间的氧化抗力。此外,Cr原子在最内层和最外层的氧化层中富集,而当环境中水蒸气浓度足够高时,最外层的Cr蒸发显著。
  • Research Article

    Isothermal oxidation behavior of Nb-bearing austenitic cast steels at 950°C

    + Author Affiliations
    • The oxidation behaviors of three austenitic cast steels with different morphologies of primary carbides at 950°C in air were investigated using scanning electron microscopy, energy dispersive spectroscopy, and focused ion beam/transmission electron microscopy. Their oxidation kinetics followed a logarithmic law, and the oxidation rate can be significantly decreased as long as a continuous silica layer formed at the scale/substrate interface. When the local Si concentration was inadequate, internal oxidation occurred beneath the oxide scale. The spallation of oxides during cooling can be inhibited with the formation of internal oxidation, owing to the reduced mismatch stress between the oxide scale and the substrate. The “Chinese-script” primary Nb(C,N) was superior to the dispersed primary Nb(C,N) in suppressing the oxidation penetration in the interdendritic region by supplying a high density of quick-diffusion Cr channels. In addition, the innermost and outermost oxidation layers were enriched with Cr, whereas the Cr evaporation in the outermost layer was significant when the water vapor concentration in the environment was high enough. These findings further the understanding regarding the oxidation behavior of austenitic cast steels and will promote the alloy development for exhaust components.
    • loading
    • [1]
      P.O. Santacreu, L. Faivre, and A. Acher, Life prediction approach for stainless steel exhaust manifold, SAE Int. J. Passeng. Cars Mech. Syst., 5(2012), No. 2, p. 904. doi: 10.4271/2012-01-0732
      [2]
      A.Y. Karnik and M.H. Shelby, Effect of exhaust gas temperature limits on the peak power performance of a turbocharged gasoline engine, J. Eng. Gas Turbines Power, 132(2010), No. 11, art. No. 112801. doi: 10.1115/1.4000856
      [3]
      F. Ohmenhäuser, C. Schwarz, S. Thalmair, and H.S. Evirgen, Constitutive modeling of the thermo-mechanical fatigue and lifetime behavior of the cast steel 1.4849, Mater. Des., 64(2014), p. 631. doi: 10.1016/j.matdes.2014.08.016
      [4]
      Y. Inoue and M. Kikuchi, Present and future trends of stainless steel for automotive exhaust system, Nippon Steel Tech. Rep., 2003, No. 88, p. 62.
      [5]
      G.A. Çelik, M.I.T. Tzini, Ş. Polat, Ş.H. Atapek, and G.N. Haidemenopoulos, Thermal and microstructural characterization of a novel ductile cast iron modified by aluminum addition, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 190. doi: 10.1007/s12613-019-1876-8
      [6]
      J.J. Yan, X.F. Huang, and W.G. Huang, High-temperature oxidation behavior of 9Cr–5Si–3Al ferritic heat-resistant steel, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1244. doi: 10.1007/s12613-019-1961-z
      [7]
      K. Matsumoto, M. Tojo, Y. Jinnai, N. Hayashi, and S. Ibaraki, Development of compact and high performance turbocharger for 1050°C exhaust gas, Mitsubishi Heavy Ind. Tech. Rev., 45(2008), No. 3, p. 2.
      [8]
      H. Singh, B.S. Sidhu, D. Puri, and S. Prakash, Use of plasma spray technology for deposition of high temperature oxidation/corrosion resistant coatings – A review, Mater. Corros., 58(2007), No. 2, p. 92. doi: 10.1002/maco.200603985
      [9]
      J.M. Francis and J.A. Jutson, The role of silicon in determining the oxidation resistance of an austenitic steel, Mater. Sci. Eng., 4(1969), No. 2-3, p. 84. doi: 10.1016/0025-5416(69)90047-0
      [10]
      M.J. Bennett, G. Dearnaley, M.R. Houlton, R.W.M. Hawes, P.D. Goode, and M.A. Wilkins, The influence of surface ion implantation upon the oxidation behaviour of a 20% Cr–25% Ni, niobium stabilized austenitic stainless steel, in carbon dioxide, at 825°C, Corros. Sci., 20(1980), No. 1, p. 73. doi: 10.1016/0010-938X(80)90112-2
      [11]
      R.C. Lobb, J.A. Sasse, and H.E. Evans, Dependence of oxidation behaviour on silicon content of 20%Cr austenitic steels, Mater. Sci. Technol., 5(1989), No. 8, p. 828. doi: 10.1179/mst.1989.5.8.828
      [12]
      R.K. Wild, High temperature oxidation of austenitic stainless steel in low oxygen pressure, Corros. Sci., 17(1977), No. 2, p. 87. doi: 10.1016/0010-938X(77)90011-7
      [13]
      S.N. Basu and G.J. Yurek, Effect of alloy grain size and silicon content on the oxidation of austenitic Fe–Cr–Ni–Mn–Si alloys in pure O2, Oxid. Met., 36(1991), No. 3-4, p. 281. doi: 10.1007/BF00662967
      [14]
      H.E. Evans and A.T. Donaldson, Silicon and chromium depletion during the long-term oxidation of thin-sectioned austenitic steel, Oxid. Met., 50(1998), No. 5-6, p. 457. doi: 10.1023/A:1018808925756
      [15]
      Y. Behnamian, A. Mostafaei, A. Kohandehghan, B.S. Amirkhiz, D. Serate, Y.F. Sun, S.B. Liu, E. Aghaie, Y.M. Zeng, M. Chmielus, W.Y. Zheng, D. Guzonas, W.X. Chen, and J.L. Luo, A comparative study of oxide scales grown on stainless steel and nickel-based superalloys in ultra-high temperature supercritical water at 800°C, Corros. Sci., 106(2016), p. 188. doi: 10.1016/j.corsci.2016.02.004
      [16]
      Z.B. Zheng, S. Wang, J. Long, J. Wang, and K.H. Zheng, Effect of rare earth elements on high temperature oxidation behaviour of austenitic steel, Corros. Sci., 164(2020), art. No. 108359. doi: 10.1016/j.corsci.2019.108359
      [17]
      C. Gu, R.Z. Liu, C.D. Wang, Y.F. Sun, and S.J. Zhang, Effect of aluminum on microstructure and high-temperature oxidation resistance of austenitic heat-resistant steel, Metals, 10(2020), No. 2, art. No. 176. doi: 10.3390/met10020176
      [18]
      T. Okuyama, T. Higashizono, N.H.K. Luan, and M. Kudo, Effect of Nb on thermal-shock resistance of austenitic heat resistant cast steel, Mater. Trans., 61(2020), No. 9, p. 1711. doi: 10.2320/matertrans.MT-M2020121
      [19]
      F. Tholence and M. Norell, High temperature corrosion of cast alloys in exhaust environments. II—Cast stainless steels, Oxid. Met., 69(2008), No. 1-2, p. 37. doi: 10.1007/s11085-007-9082-x
      [20]
      N. Xu, D. Monceau, D. Young, and J. Furtado, High temperature corrosion of cast heat resisting steels in CO + CO2 gas mixtures, Corros. Sci., 50(2008), No. 8, p. 2398. doi: 10.1016/j.corsci.2008.06.001
      [21]
      D. Oquab, N. Xu, D. Monceau, and D.J. Young, Subsurface microstructural changes in a cast heat resisting alloy caused by high temperature corrosion, Corros. Sci., 52(2010), No. 1, p. 255. doi: 10.1016/j.corsci.2009.09.014
      [22]
      M.P. Brady, G. Muralidharan, D.N. Leonard, J.A. Haynes, R.G. Weldon, and R.D. England, Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800℃ in air with water vapor, Oxid. Met., 82(2014), No. 5-6, p. 359. doi: 10.1007/s11085-014-9496-1
      [23]
      J.B. Yan, Y.M. Gao, L. Liang, Z.Z. Ye, Y.F. Li, W. Chen, and J.J. Zhang, Effect of yttrium on the cyclic oxidation behaviour of HP40 heat-resistant steel at 1373 K, Corros. Sci., 53(2011), No. 1, p. 329. doi: 10.1016/j.corsci.2010.09.039
      [24]
      Y.C. Liu, W.F. Wei, L. Benum, M. Oballa, M. Gyorffy, and W.X. Chen, Oxidation behavior of Ni–Cr–Fe-based alloys: Effect of alloy microstructure and silicon content, Oxid. Met., 73(2010), No. 1-2, p. 207. doi: 10.1007/s11085-009-9172-z
      [25]
      Y.H. Zhang, M. Li, L.A. Godlewski, J.W. Zindel, and Q. Feng, Creep behavior at 1273 K (1000 °C) in Nb-bearing austenitic heat-resistant cast steels developed for exhaust component applications, Metall. Mater. Trans. A, 47(2016), No. 7, p. 3289. doi: 10.1007/s11661-016-3544-1
      [26]
      H.L. Zhao, C.C. Engler-PintoJr, J. Zindel, L. Godlewski, Y.H. Zhang, Q. Feng, and M. Li, The effect of metal-carbide morphology on the thermomechanical fatigue (TMF) behavior of cast austenitic alloys for exhaust manifolds, Procedia Eng., 133(2015), p. 669. doi: 10.1016/j.proeng.2015.12.648
      [27]
      H.L. Zhao, C.C. Engler-PintoJr, J.Y. Tong, L.A. Godlewski, J.W. Zindel, L.F. Li, M. Li, and Q. Feng, Mechanical response and dislocation substructure of a cast austenitic steel under low cycle fatigue at elevated temperatures, Mater. Sci. Eng. A, 703(2017), p. 422. doi: 10.1016/j.msea.2017.07.030
      [28]
      Y.H. Zhang, M. Li, L.A. Godlewski, J.W. Zindel, and Q. Feng, Effects of N/C ratio on solidification behaviors of novel Nb-bearing austenitic heat-resistant cast steels for exhaust components of gasoline engines, Metall. Mater. Trans. A, 48(2017), No. 3, p. 1151. doi: 10.1007/s11661-016-3920-x
      [29]
      E.A.A.G. Ribeiro, R. Papaléo, and J.R.C. Guimarães, Microstructure and creep behavior of a niobium alloyed cast heat-resistant 26 pct Cr steel, Metall. Trans. A, 17(1986), No. 4, p. 691. doi: 10.1007/BF02643989
      [30]
      J.P. Shingledecker, P.J. Maziasz, N.D. Evans, and M.J. Pollard, Creep behavior of a new cast austenitic alloy, Int. J. Press. Vessels Pip., 84(2007), No. 1-2, p. 21. doi: 10.1016/j.ijpvp.2006.09.014
      [31]
      T. Onishi, S. Nakakubo, and M. Takeda, Calculations of internal oxidation rate equations and boundary conditions between internal and external oxidation in silicon containing steels, Mater. Trans., 51(2010), No. 3, p. 482. doi: 10.2320/matertrans.M2009256
      [32]
      C. Wagner, Reaktionstypen bei der oxydation von legierungen, Z. Elektrochem., 63(1959), No. 7, p. 772.
      [33]
      H.E. Evans, Modelling oxide spallation, Mater. High Temp., 12(1994), No. 2-3, p. 219. doi: 10.1080/09603409.1994.11689489
      [34]
      C.C. Lee, C.L. Tien, W.S. Sheu, and C.C. Jaing, An apparatus for the measurement of internal stress and thermal expansion coefficient of metal oxide films, Rev. Sci. Instrum., 72(2001), No. 4, p. 2128. doi: 10.1063/1.1357228
      [35]
      W. Qu, L. Jian, J.M. Hill, and D.G. Ivey, Electrical and microstructural characterization of spinel phases as potential coatings for SOFC metallic interconnects, J. Power Sources, 153(2006), No. 1, p. 114. doi: 10.1016/j.jpowsour.2005.03.137
      [36]
      Y. Saito, T. Maruyama, and T. Amano, Adherence of oxide scale formed on Ni–20Cr–1Si alloys with small additions of rare earth elements, Mater. Sci. Eng., 87(1987), p. 275. doi: 10.1016/0025-5416(87)90389-2
      [37]
      H. Fujikawa, T. Morimoto, Y. Nishiyama, and S.B. Newcomb, The effects of small additions of yttrium on the high-temperature oxidation resistance of a Si-containing austenitic stainless steel, Oxid. Met., 59(2003), No. 1-2, p. 23. doi: 10.1023/A:1023061814413
      [38]
      A. Paúl, R. Sánchez, O.M. Montes, and J.A. Odriozola, The role of silicon in the reactive-elements effect on the oxidation of conventional austenitic stainless steel, Oxid. Met., 67(2007), No. 1-2, p. 87. doi: 10.1007/s11085-006-9046-6
      [39]
      E.J. Opila, D.L. Myers, N.S. Jacobson, I.M.B. Nielsen, D.F. Johnson, J.K. Olminsky, and M.D. Allendorf, Theoretical and experimental investigation of the thermochemistry of CrO2(OH)2(g), J. Phys. Chem. A, 111(2007), No. 10, p. 1971. doi: 10.1021/jp0647380
      [40]
      Y.B. Zhang, X.Y. Hu, C.R. Li, W.W. Xu, and Y.T. Zhao, Composition design, phase transitions of a new polycrystalline Ni–Cr–Co–W base superalloy and its isothermal oxidation dynamics behaviors at 1300°C, Mater. Des., 129(2017), p. 26. doi: 10.1016/j.matdes.2017.05.028

    Catalog


    • /

      返回文章
      返回