Cite this article as:

Liang Lan, Ruyi Xin, Xinyuan Jin, Shuang Gao, and Bo He, Influence of multiple laser shock peening treatments on the microstructure and mechanical properties of Ti–6Al–4V alloy fabricated by electron beam melting, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp.1780-1787. https://dx.doi.org/10.1007/s12613-021-2322-2
Liang Lan, Ruyi Xin, Xinyuan Jin, Shuang Gao, and Bo He, Influence of multiple laser shock peening treatments on the microstructure and mechanical properties of Ti–6Al–4V alloy fabricated by electron beam melting, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp.1780-1787. https://dx.doi.org/10.1007/s12613-021-2322-2
引用本文 PDF XML SpringerLink

多次激光冲击对电子束熔化成形Ti–6Al–4V合金的微观组织及力学性能的影响

摘要: 激光冲击强化作为一种先进的表面处理技术,利用强激光束产生等离子冲击波,可用来提升增材制造金属构件的力学性能。然而,激光冲击对增材制造金属构件力学性能的影响机制仍不清晰。本文研究了多次激光冲击对电子束增材制造(EBM)Ti–6Al–4V钛合金的微观组织及力学性能的影响。系统地分析了多次激光冲击前后电子束增材制造Ti–6Al–4V钛合金试样的微观组织、表面形貌、残余应力及拉伸性能。通过x射线计算机断层扫描三维成像技术分析了激光冲击前后电子束成形试样的内部孔隙分布。研究结果表明,经过两次激光冲击强化处理,可以降低电子束成形Ti–6Al–4V合金试样内部孔隙,细化表层晶粒;两次激光冲击强化后试样抗拉强度提升了12%。此外,试样表层应力状态发生改变,表层产生的最大残余压应力达到419 MPa,影响层深度达到700 μm。多次激光冲击提升EBM成形钛合金力学性能的强化机制可归结为α相的晶粒细化与较深的残余压应力层的形成。

 

Influence of multiple laser shock peening treatments on the microstructure and mechanical properties of Ti–6Al–4V alloy fabricated by electron beam melting

Abstract: Laser shock peening (LSP) is an attractive post-processing method to tailor surface microstructure and enhance mechanical performances of additive manufactured (AM) components. The effects of multiple LSP treatments on the microstructure and mechanical properties of Ti–6Al–4V part produced by electron beam melting (EBM), as a mature AM process, were studied in this work. Microstructure, surface topography, residual stress, and tensile performance of EBM-manufactured Ti–6Al–4V specimens were systematically analyzed subjected to different LSP treatments. The distribution of porosities in EBM sample was assessed via X-ray computed tomography. The results showed that EBM samples with two LSP treatments possessed a lower porosity value of 0.05% compared to the value of 0.08% for the untreated samples. The strength of EBM samples with two LSP treatments was remarkably raised by 12% as compared with the as-built samples. The grains of α phase were refined in near-surface layer, and a dramatic increase in the depth and magnitude of compressive residual stress (CRS) was achieved in EBM sample with multiple LSP treatments. The grain refinement of α phase and CRS with larger depth were responsible for the strength enhancement of EBM samples with two LSP treatments.

 

/

返回文章
返回