Cite this article as: |
Linhui Chang, Sheng Chen, Xionghui Xie, Buming Chen, Haihong Qiao, Hui Huang, Zhongcheng Guo, and Ruidong Xu, Effects of Zr content on electrochemical performance of Ti/Sn–Ru–Co–ZrOx electrodes, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2181-2188. https://doi.org/10.1007/s12613-021-2326-y |
陈步明 E-mail: bumchen@kust.edu.cn
[1] |
J.M. Lu, D. Dreisinger, and T. Glück, Manganese electrodeposition—A literature review, Hydrometallurgy, 141(2014), p. 105. doi: 10.1016/j.hydromet.2013.11.002
|
[2] |
S.K. Padhy, P. Patnaik, B.C. Tripathy, M.K. Ghosh, and I.N. Bhattacharya, Electrodeposition of manganese metal from sulphate solutions in the presence of sodium octyl sulphate, Hydrometallurgy, 165(2016), p. 73. doi: 10.1016/j.hydromet.2015.10.027
|
[3] |
G. Tsurtsumia, D. Shengelia, N. Koiava, et al., Novel hydro-electrometallurgical technology for simultaneous production of manganese metal, electrolytic manganese dioxide, and manganese sulfate monohydrate, Hydrometallurgy, 186(2019), p. 260. doi: 10.1016/j.hydromet.2019.04.028
|
[4] |
E. Rocca, G. Bourguignon, and J. Steinmetz, Corrosion management of PbCaSn alloys in lead-acid batteries: Effect of composition, metallographic state and voltage conditions, J. Power Sources, 161(2006), No. 1, p. 666. doi: 10.1016/j.jpowsour.2006.04.140
|
[5] |
E. Rudnik, Effect of gluconate ions on electroreduction phenomena during manganese deposition on glassy carbon in acidic chloride and sulfate solutions, J. Electroanal. Chem., 741(2015), p. 20. doi: 10.1016/j.jelechem.2015.01.019
|
[6] |
J.E. Lewis, P.H. Scaife, and D.A.J. Swinkels, Electrolytic manganese metal from chloride electrolytes. I. Study of deposition conditions, J. Appl. Electrochem., 6(1976), No. 3, p. 199. doi: 10.1007/BF00616142
|
[7] |
X.Z. Cao, D.B. Dreisinger, J.M. Lu, and F. Belanger, Electrorefining of high purity manganese, Hydrometallurgy, 171(2017), p. 412. doi: 10.1016/j.hydromet.2017.06.015
|
[8] |
A. Sulcius, E. Griskonis, K. Kantminiene, and N. Zmuidzinaviciene, Influence of different electrolysis parameters on electrodeposition of γ- and α-Mn from pure electrolytes—A review with special reference to Russian language literature, Hydrometallurgy, 137(2013), p. 33. doi: 10.1016/j.hydromet.2013.05.002
|
[9] |
P. Wei, O.E. Hileman Jr, M.R. Bateni, X.H. Deng, and A. Petric, Manganese deposition without additives, Surf. Coat. Technol., 201(2007), No. 18, p. 7739. doi: 10.1016/j.surfcoat.2007.03.007
|
[10] |
Y.X. Zheng, Preparation of electrolytic manganese metal from MnCl2 system with graphite substract lead dioxide anode, China Manganese Ind., 16(1998), No. 3, p. 30.
|
[11] |
W.C. Yang, W.J. Peng, X.H. Li, et al., Preparation of titanium-substrate modified Ti/SnO2/MnO2 anode plate for electrolytic manganese metal and its performance study, Min. Metall. Eng., 34(2014), No. 3, p. 90.
|
[12] |
Y.Q. Wen, W. Shang, B.H. Xie, C.B. He, Y.Y. Wang, and D. Kong, Preparation and properties of composite coating modified titanium anode for electrolytic manganese dioxide, China Surf. Eng., 30(2017), No. 2, p. 85.
|
[13] |
J.M. Hu, H.M. Meng, J.Q. Zhang, and C.N. Cao, Degradation mechanism of long service life Ti/IrO2–Ta2O5 oxide anodes in sulphuric acid, Corros. Sci., 44(2002), No. 8, p. 1655. doi: 10.1016/S0010-938X(01)00165-2
|
[14] |
E. Horváth, J. Kristóf, L. Vázquez-Gómez, Á. Rédey, and V. Vágvölgyi, Investigationof RuO2–IrO2–SnO2 thin film evolution, J. Therm. Anal. Calorim., 86(2006), No. 1, p. 141. doi: 10.1007/s10973-006-7578-2
|
[15] |
Z.X. Zhang and D. Huang, Coated Titanium Electrode, Metallurgical Industry Press, Beijing, 2014, p. 62.
|
[16] |
Y.Y. Chen, T. Zhang, X. Wang, Y.Q. Shao, and D. Tang, Phase structure and microstructure of a nanoscale TiO2–RuO2–IrO2–Ta2O5 anode coating on titanium, J. Am. Ceram. Soc., 91(2008), No. 12, p. 4154. doi: 10.1111/j.1551-2916.2008.02808.x
|
[17] |
W. Zhang, E. Ghali, and G. Houlachi, Review of oxide coated catalytic titanium anodes performance for metal electrowinning, Hydrometallurgy, 169(2017), p. 456. doi: 10.1016/j.hydromet.2017.02.014
|
[18] |
H. You, Y.H. Cui, Y.J. Feng, J.F. Liu, and W.M. Cai, Preparation and performance of SnO2 electrocatalytic electrode with titanium-based Co interlayer, Mater. Sci. Technol., 12(2004), No. 3, p. 230.
|
[19] |
L.H. Chang, B.M. Chen, H.H. Qiao, et al., Study of the effects of pretreatment processing on the properties of metal oxide coatings on Ti-based sheet, J. Electrochem. Soc., 168(2021), No. 3, art. No. 033501. doi: 10.1149/1945-7111/abe726
|
[20] |
D.P. Wang, G. Chen, A.D. Wang, et al., Corrosion behavior of single- and poly-crystalline dual-phase TiAl–Ti3Al alloy in NaCl solution, Int. J. Miner. Metall. Mater, 2022. DOI: 10.1007/s12613-022-2513-5
|
[21] |
R.D. Xu, L.P. Huang, J.F. Zhou, P. Zhan, Y.Y. Guan, and Y. Kong, Effects of tungsten carbide on electrochemical properties and microstructural features of Al/Pb–PANI–WC composite inert anodes used in zinc electrowinning, Hydrometallurgy, 125-126(2012), p. 8. doi: 10.1016/j.hydromet.2012.04.012
|
[22] |
J.H. Huang, M.J. Hou, J.Y. Wang, et al., RuO2 nanoparticles decorate belt-like anatase TiO2 for highly efficient chlorine evolution, Electrochimica Acta, 339(2020), art. No. 135878. doi: 10.1016/j.electacta.2020.135878
|
[23] |
B.M. Chen, S.C. Wang, J.H. Liu, et al., Corrosion resistance mechanism of a novel porous Ti/Sn–Sb–RuOx/β-PbO2 anode for zinc electrowinning, Corros. Sci., 144(2018), p. 136. doi: 10.1016/j.corsci.2018.08.049
|
[24] |
S. Trasatti, Structure of the metal/electrolyte solution interface: New data for theory, Electrochimica Acta, 36(1991), No. 11-12, p. 1659. doi: 10.1016/0013-4686(91)85023-Z
|
[25] |
H. Vogt, Note on a method to interrelate inner and outer electrode areas, Electrochimica Acta, 39(1994), No. 13, p. 1981. doi: 10.1016/0013-4686(94)85077-1
|
[26] |
Y. Chen, L. Hong, H.M. Xue, et al., Preparation and characterization of TiO2-NTs/SnO2–Sb electrodes by electrodeposition, J. Electroanal. Chem., 648(2010), No. 2, p. 119. doi: 10.1016/j.jelechem.2010.08.004
|
[27] |
Y.W. Yao, M.M. Zhao, C.M. Zhao, and H.J. Zhang, Preparation and properties of PbO2–ZrO2 nanocomposite electrodes by pulse electrodeposition, Electrochimica Acta, 117(2014), p. 453. doi: 10.1016/j.electacta.2013.11.150
|
[28] |
Y.W. Yao, T. Zhou, C.M. Zhao, Q.M. Jing, and Y. Wang, Influence of ZrO2 particles on fluorine-doped lead dioxide electrodeposition process from nitrate bath, Electrochim. Acta, 99(2013), p. 225. doi: 10.1016/j.electacta.2013.03.117
|
[29] |
Y.H. Song, G. Wei, and R.C. Xiong, Structure and properties of PbO2–CeO2 anodes on stainless steel, Electrochim. Acta, 52(2007), No. 24, p. 7022. doi: 10.1016/j.electacta.2007.05.024
|
[30] |
J.H. Liu, B.M. Chen, S. Chen, S.C. Wang, Z.C. Guo, Preparation and electrochemical performance of the stainless steel/α-PbO2–ZrO2/β-PbO2–ZrO2-CNT composite anode, ECS J. Solid State Sci. Technol., 9(2020), No. 12, art. No. 121011. doi: 10.1149/2162-8777/abd263
|
[31] |
H. Mazhari Abbasi, K. Jafarzadeh, and S.M. Mirali, An investigation of the effect of RuO2 on the deactivation and corrosion mechanism of a Ti/IrO2+Ta2O5 coating in an OER application, J. Electroanal. Chem., 777(2016), p. 67. doi: 10.1016/j.jelechem.2016.07.036
|