留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 12
Dec.  2022

图(10)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1220
  • HTML全文浏览量:  461
  • PDF下载量:  64
  • 被引次数: 0
Linhui Chang, Sheng Chen, Xionghui Xie, Buming Chen, Haihong Qiao, Hui Huang, Zhongcheng Guo,  and Ruidong Xu, Effects of Zr content on electrochemical performance of Ti/Sn–Ru–Co–ZrOx electrodes, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2181-2188. https://doi.org/10.1007/s12613-021-2326-y
Cite this article as:
Linhui Chang, Sheng Chen, Xionghui Xie, Buming Chen, Haihong Qiao, Hui Huang, Zhongcheng Guo,  and Ruidong Xu, Effects of Zr content on electrochemical performance of Ti/Sn–Ru–Co–ZrOx electrodes, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2181-2188. https://doi.org/10.1007/s12613-021-2326-y
引用本文 PDF XML SpringerLink
研究论文

Zr含量对Ti/Sn–Ru–Co–ZrOx电极电化学性能的影响

  • 通讯作者:

    陈步明    E-mail: bumchen@kust.edu.cn

  • 在MnCl2体系中电解锰具有槽电压低、可有效降低能耗、锰产品品质优良等优点,逐渐成为研究热点。然而阳极在氯离子体系中稳定性差、易失效是其面临的主要问题。本文通过热分解氧化法制备了梯度Zr元素改性的Ti/Sn–Ru–Co–Zr新型阳极。通过SEM(扫描电子显微镜)获取了涂层阳极的形貌特征。基于涂层的电化学性能测试及XRD(X射线衍射)测试研究并分析了Zr元素对电极性能的影响。当Sn–Ru–Co–Zr的摩尔比为6:1:0.8:0.3时,由于ZrO2纳米粒子的良好填充效果,涂层表面的裂纹最小,整体致密性最好。此外,通过此条件制备的电极在1mol% NH4Cl 和 1.5mol% HCl 溶液体系中具有最低的传质阻力和较高的析氯活性。通过加速寿命测试并根据经验公式计算可得,该电极的使用寿命可达3102 h,较无Zr电极提高11.87%。
  • Research Article

    Effects of Zr content on electrochemical performance of Ti/Sn–Ru–Co–ZrOx electrodes

    + Author Affiliations
    • The low cell voltage during electrolytic Mn from the MnCl2 system can effectively reduce the power consumption. In this work, the Ti/Sn−Ru−Co−Zr modified anodes were obtained by using thermal decomposition oxidation. The physical parameters of coatings were observed by SEM (scanning electron microscope). Based on the electrochemical performance and SEM/XRD (X-ray diffraction) of the coatings, the influence of Zr on electrode performance was studied and analyzed. When the mole ratio of Sn−Ru−Co−Zr is 6:1:0.8:0.3, the cracks on the surface of coatings were the smallest, and the compactness was the best due to the excellent filling effect of ZrO2 nanoparticles. Moreover, the electrode prepared under this condition had the lowest mass transfer resistance and high chloride evolution activity in the 1mol% NH4Cl and 1.5mol% HCl system. The service life of 3102 h was achieved according to the empirical formula of accelerated-life-test of the new type anode.
    • loading
    • [1]
      J.M. Lu, D. Dreisinger, and T. Glück, Manganese electrodeposition—A literature review, Hydrometallurgy, 141(2014), p. 105. doi: 10.1016/j.hydromet.2013.11.002
      [2]
      S.K. Padhy, P. Patnaik, B.C. Tripathy, M.K. Ghosh, and I.N. Bhattacharya, Electrodeposition of manganese metal from sulphate solutions in the presence of sodium octyl sulphate, Hydrometallurgy, 165(2016), p. 73. doi: 10.1016/j.hydromet.2015.10.027
      [3]
      G. Tsurtsumia, D. Shengelia, N. Koiava, et al., Novel hydro-electrometallurgical technology for simultaneous production of manganese metal, electrolytic manganese dioxide, and manganese sulfate monohydrate, Hydrometallurgy, 186(2019), p. 260. doi: 10.1016/j.hydromet.2019.04.028
      [4]
      E. Rocca, G. Bourguignon, and J. Steinmetz, Corrosion management of PbCaSn alloys in lead-acid batteries: Effect of composition, metallographic state and voltage conditions, J. Power Sources, 161(2006), No. 1, p. 666. doi: 10.1016/j.jpowsour.2006.04.140
      [5]
      E. Rudnik, Effect of gluconate ions on electroreduction phenomena during manganese deposition on glassy carbon in acidic chloride and sulfate solutions, J. Electroanal. Chem., 741(2015), p. 20. doi: 10.1016/j.jelechem.2015.01.019
      [6]
      J.E. Lewis, P.H. Scaife, and D.A.J. Swinkels, Electrolytic manganese metal from chloride electrolytes. I. Study of deposition conditions, J. Appl. Electrochem., 6(1976), No. 3, p. 199. doi: 10.1007/BF00616142
      [7]
      X.Z. Cao, D.B. Dreisinger, J.M. Lu, and F. Belanger, Electrorefining of high purity manganese, Hydrometallurgy, 171(2017), p. 412. doi: 10.1016/j.hydromet.2017.06.015
      [8]
      A. Sulcius, E. Griskonis, K. Kantminiene, and N. Zmuidzinaviciene, Influence of different electrolysis parameters on electrodeposition of γ- and α-Mn from pure electrolytes—A review with special reference to Russian language literature, Hydrometallurgy, 137(2013), p. 33. doi: 10.1016/j.hydromet.2013.05.002
      [9]
      P. Wei, O.E. Hileman Jr, M.R. Bateni, X.H. Deng, and A. Petric, Manganese deposition without additives, Surf. Coat. Technol., 201(2007), No. 18, p. 7739. doi: 10.1016/j.surfcoat.2007.03.007
      [10]
      Y.X. Zheng, Preparation of electrolytic manganese metal from MnCl2 system with graphite substract lead dioxide anode, China Manganese Ind., 16(1998), No. 3, p. 30.
      [11]
      W.C. Yang, W.J. Peng, X.H. Li, et al., Preparation of titanium-substrate modified Ti/SnO2/MnO2 anode plate for electrolytic manganese metal and its performance study, Min. Metall. Eng., 34(2014), No. 3, p. 90.
      [12]
      Y.Q. Wen, W. Shang, B.H. Xie, C.B. He, Y.Y. Wang, and D. Kong, Preparation and properties of composite coating modified titanium anode for electrolytic manganese dioxide, China Surf. Eng., 30(2017), No. 2, p. 85.
      [13]
      J.M. Hu, H.M. Meng, J.Q. Zhang, and C.N. Cao, Degradation mechanism of long service life Ti/IrO2–Ta2O5 oxide anodes in sulphuric acid, Corros. Sci., 44(2002), No. 8, p. 1655. doi: 10.1016/S0010-938X(01)00165-2
      [14]
      E. Horváth, J. Kristóf, L. Vázquez-Gómez, Á. Rédey, and V. Vágvölgyi, Investigationof RuO2–IrO2–SnO2 thin film evolution, J. Therm. Anal. Calorim., 86(2006), No. 1, p. 141. doi: 10.1007/s10973-006-7578-2
      [15]
      Z.X. Zhang and D. Huang, Coated Titanium Electrode, Metallurgical Industry Press, Beijing, 2014, p. 62.
      [16]
      Y.Y. Chen, T. Zhang, X. Wang, Y.Q. Shao, and D. Tang, Phase structure and microstructure of a nanoscale TiO2–RuO2–IrO2–Ta2O5 anode coating on titanium, J. Am. Ceram. Soc., 91(2008), No. 12, p. 4154. doi: 10.1111/j.1551-2916.2008.02808.x
      [17]
      W. Zhang, E. Ghali, and G. Houlachi, Review of oxide coated catalytic titanium anodes performance for metal electrowinning, Hydrometallurgy, 169(2017), p. 456. doi: 10.1016/j.hydromet.2017.02.014
      [18]
      H. You, Y.H. Cui, Y.J. Feng, J.F. Liu, and W.M. Cai, Preparation and performance of SnO2 electrocatalytic electrode with titanium-based Co interlayer, Mater. Sci. Technol., 12(2004), No. 3, p. 230.
      [19]
      L.H. Chang, B.M. Chen, H.H. Qiao, et al., Study of the effects of pretreatment processing on the properties of metal oxide coatings on Ti-based sheet, J. Electrochem. Soc., 168(2021), No. 3, art. No. 033501. doi: 10.1149/1945-7111/abe726
      [20]
      D.P. Wang, G. Chen, A.D. Wang, et al., Corrosion behavior of single- and poly-crystalline dual-phase TiAl–Ti3Al alloy in NaCl solution, Int. J. Miner. Metall. Mater, 2022. DOI: 10.1007/s12613-022-2513-5
      [21]
      R.D. Xu, L.P. Huang, J.F. Zhou, P. Zhan, Y.Y. Guan, and Y. Kong, Effects of tungsten carbide on electrochemical properties and microstructural features of Al/Pb–PANI–WC composite inert anodes used in zinc electrowinning, Hydrometallurgy, 125-126(2012), p. 8. doi: 10.1016/j.hydromet.2012.04.012
      [22]
      J.H. Huang, M.J. Hou, J.Y. Wang, et al., RuO2 nanoparticles decorate belt-like anatase TiO2 for highly efficient chlorine evolution, Electrochimica Acta, 339(2020), art. No. 135878. doi: 10.1016/j.electacta.2020.135878
      [23]
      B.M. Chen, S.C. Wang, J.H. Liu, et al., Corrosion resistance mechanism of a novel porous Ti/Sn–Sb–RuOx/β-PbO2 anode for zinc electrowinning, Corros. Sci., 144(2018), p. 136. doi: 10.1016/j.corsci.2018.08.049
      [24]
      S. Trasatti, Structure of the metal/electrolyte solution interface: New data for theory, Electrochimica Acta, 36(1991), No. 11-12, p. 1659. doi: 10.1016/0013-4686(91)85023-Z
      [25]
      H. Vogt, Note on a method to interrelate inner and outer electrode areas, Electrochimica Acta, 39(1994), No. 13, p. 1981. doi: 10.1016/0013-4686(94)85077-1
      [26]
      Y. Chen, L. Hong, H.M. Xue, et al., Preparation and characterization of TiO2-NTs/SnO2–Sb electrodes by electrodeposition, J. Electroanal. Chem., 648(2010), No. 2, p. 119. doi: 10.1016/j.jelechem.2010.08.004
      [27]
      Y.W. Yao, M.M. Zhao, C.M. Zhao, and H.J. Zhang, Preparation and properties of PbO2–ZrO2 nanocomposite electrodes by pulse electrodeposition, Electrochimica Acta, 117(2014), p. 453. doi: 10.1016/j.electacta.2013.11.150
      [28]
      Y.W. Yao, T. Zhou, C.M. Zhao, Q.M. Jing, and Y. Wang, Influence of ZrO2 particles on fluorine-doped lead dioxide electrodeposition process from nitrate bath, Electrochim. Acta, 99(2013), p. 225. doi: 10.1016/j.electacta.2013.03.117
      [29]
      Y.H. Song, G. Wei, and R.C. Xiong, Structure and properties of PbO2–CeO2 anodes on stainless steel, Electrochim. Acta, 52(2007), No. 24, p. 7022. doi: 10.1016/j.electacta.2007.05.024
      [30]
      J.H. Liu, B.M. Chen, S. Chen, S.C. Wang, Z.C. Guo, Preparation and electrochemical performance of the stainless steel/α-PbO2–ZrO2/β-PbO2–ZrO2-CNT composite anode, ECS J. Solid State Sci. Technol., 9(2020), No. 12, art. No. 121011. doi: 10.1149/2162-8777/abd263
      [31]
      H. Mazhari Abbasi, K. Jafarzadeh, and S.M. Mirali, An investigation of the effect of RuO2 on the deactivation and corrosion mechanism of a Ti/IrO2+Ta2O5 coating in an OER application, J. Electroanal. Chem., 777(2016), p. 67. doi: 10.1016/j.jelechem.2016.07.036

    Catalog


    • /

      返回文章
      返回