Cite this article as:

Linhui Chang, Sheng Chen, Xionghui Xie, Buming Chen, Haihong Qiao, Hui Huang, Zhongcheng Guo, and Ruidong Xu, Effects of Zr content on electrochemical performance of Ti/Sn–Ru–Co–ZrOx electrodes, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp.2181-2188. https://dx.doi.org/10.1007/s12613-021-2326-y
Linhui Chang, Sheng Chen, Xionghui Xie, Buming Chen, Haihong Qiao, Hui Huang, Zhongcheng Guo, and Ruidong Xu, Effects of Zr content on electrochemical performance of Ti/Sn–Ru–Co–ZrOx electrodes, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp.2181-2188. https://dx.doi.org/10.1007/s12613-021-2326-y
引用本文 PDF XML SpringerLink

Zr含量对Ti/Sn–Ru–Co–ZrOx电极电化学性能的影响

摘要: 在MnCl2体系中电解锰具有槽电压低、可有效降低能耗、锰产品品质优良等优点,逐渐成为研究热点。然而阳极在氯离子体系中稳定性差、易失效是其面临的主要问题。本文通过热分解氧化法制备了梯度Zr元素改性的Ti/Sn–Ru–Co–Zr新型阳极。通过SEM(扫描电子显微镜)获取了涂层阳极的形貌特征。基于涂层的电化学性能测试及XRD(X射线衍射)测试研究并分析了Zr元素对电极性能的影响。当Sn–Ru–Co–Zr的摩尔比为6:1:0.8:0.3时,由于ZrO2纳米粒子的良好填充效果,涂层表面的裂纹最小,整体致密性最好。此外,通过此条件制备的电极在1mol% NH4Cl 和 1.5mol% HCl 溶液体系中具有最低的传质阻力和较高的析氯活性。通过加速寿命测试并根据经验公式计算可得,该电极的使用寿命可达3102 h,较无Zr电极提高11.87%。

 

Effects of Zr content on electrochemical performance of Ti/Sn–Ru–Co–ZrOx electrodes

Abstract: The low cell voltage during electrolytic Mn from the MnCl2 system can effectively reduce the power consumption. In this work, the Ti/Sn−Ru−Co−Zr modified anodes were obtained by using thermal decomposition oxidation. The physical parameters of coatings were observed by SEM (scanning electron microscope). Based on the electrochemical performance and SEM/XRD (X-ray diffraction) of the coatings, the influence of Zr on electrode performance was studied and analyzed. When the mole ratio of Sn−Ru−Co−Zr is 6:1:0.8:0.3, the cracks on the surface of coatings were the smallest, and the compactness was the best due to the excellent filling effect of ZrO2 nanoparticles. Moreover, the electrode prepared under this condition had the lowest mass transfer resistance and high chloride evolution activity in the 1mol% NH4Cl and 1.5mol% HCl system. The service life of 3102 h was achieved according to the empirical formula of accelerated-life-test of the new type anode.

 

/

返回文章
返回