留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 9
Sep.  2022

图(15)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  2363
  • HTML全文浏览量:  378
  • PDF下载量:  35
  • 被引次数: 0
Mingfan Qi, Liangyu Wei, Yuzhao Xu, Jin Wang, Aisen Liu, Bing Hao, and Jicheng Wang, Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg–2Zn–0.1Mn–0.3Ca–xY biological magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1746-1754. https://doi.org/10.1007/s12613-021-2327-x
Cite this article as:
Mingfan Qi, Liangyu Wei, Yuzhao Xu, Jin Wang, Aisen Liu, Bing Hao, and Jicheng Wang, Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg–2Zn–0.1Mn–0.3Ca–xY biological magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1746-1754. https://doi.org/10.1007/s12613-021-2327-x
引用本文 PDF XML SpringerLink
研究论文

微量Y对Mg–2Zn–0.1Mn–0.3Ca–xY生物镁合金显微组织、力学性能及腐蚀行为的影响

  • 通讯作者:

    祁明凡    E-mail: qimfan@sina.cn

文章亮点

  • (1) 研究了Y含量对Mg–2Zn–0.3Ca–0.1Mn–xY合金微观组织的影响规律。
  • (2) 研究了Y含量对Mg–2Zn–0.3Ca–0.1Mn–xY合金力学性能的影响规律。
  • (3) 研究了Y含量对Mg–2Zn–0.3Ca–0.1Mn–xY合金耐蚀性能的影响规律。
  • (4) 阐明了Y含量对Mg–2Zn–0.3Ca–0.1Mn–xY合金腐蚀行为的影响机制。
  • 研究了添加微量Y元素对Mg–2Zn–0.3Ca–0.1Mn–xY(x = 0,0.1,0.2,0.3)生物镁合金显微组织、力学性能和耐蚀性能的影响。结果表明,当Y含量从0wt%增加到0.3wt%时,晶粒尺寸从310 μm下降至144 μm,第二相体积分数从0.4%增长至6.0%,合金的屈服强度不断提高,抗拉强度和伸长率均先降低后升高。当Y元素含量提高到0.3wt%时,合金中开始析出Mg3Zn6Y相,且合金具有最优异的力学性能,其抗拉强度、屈服强度和伸长率分别为119 MPa、69 MPa和9.1%。另外,Y含量为0.3wt%时,Mg–2Zn–0.3Ca–0.1Mn–xY合金在模拟体液中表现出最优耐蚀性能。力学性能和耐蚀性能的提高主要归功于晶粒细化和析出的Mg3Zn6Y相。
  • Research Article

    Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg–2Zn–0.1Mn–0.3Ca–xY biological magnesium alloy

    + Author Affiliations
    • The effects of trace yttrium (Y) element on the microstructure, mechanical properties, and corrosion resistance of Mg–2Zn–0.1Mn–0.3Ca–xY (x = 0, 0.1, 0.2, 0.3) biological magnesium alloys are investigated. Results show that grain size decreases from 310 to 144 μm when Y content increases from 0wt% to 0.3wt%. At the same time, volume fraction of the second phase increases from 0.4% to 6.0%, yield strength of the alloy continues to increase, and ultimate tensile strength and elongation decrease initially and then increase. When the Y content increases to 0.3wt%, Mg3Zn6Y phase begins to precipitate in the alloy; thus, the alloy exhibits the most excellent mechanical property. At this time, its ultimate tensile strength, yield strength, and elongation are 119 MPa, 69 MPa, and 9.1%, respectively. In addition, when the Y content is 0.3wt%, the alloy shows the best corrosion resistance in the simulated body fluid (SBF). This investigation has revealed that the improvement of mechanical properties and corrosion resistance is mainly attributed to the grain refinement and the precipitated Mg3Zn6Y phase.
    • loading
    • [1]
      J.L. Su, J. Teng, Z.L. Xu, and Y. Li, Biodegradable magnesium-matrix composites: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 724. doi: 10.1007/s12613-020-1987-2
      [2]
      M. Razzaghi, M. Kasiri-Asgarani, H.R. Bakhsheshi-Rad, and H. Ghayour, In vitro bioactivity and corrosion of PLGA/hardystonite composite-coated magnesium-based nanocomposite for implant applications, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 168. doi: 10.1007/s12613-020-2072-6
      [3]
      Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
      [4]
      M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 27(2006), No. 9, p. 1728. doi: 10.1016/j.biomaterials.2005.10.003
      [5]
      M.W. Yu, J.Y. Li, J.X. Li, J. Wang, H.Y. Lai, and Y. Zhang, Effects of trace Sr on microstructure, mechanical properties and corrosion resistance of Mg–0.2Zn–0.1Mn–xSr biomaterials, Rare Met. Mater. Eng., 48(2019), No. 12, p. 4016.
      [6]
      Y.Z. Xu, J.Y. Li, M.F. Qi, L.H. Liao, and Z.J. Gao, Enhanced mechanical properties of Mg–Zn–Y–Zr alloy by low-speed indirect extrusion, J. Mater. Res. Technol., 9(2020), No. 5, p. 9856. doi: 10.1016/j.jmrt.2020.06.029
      [7]
      R.Q. Zhang, J.F. Wang, S. Huang, S.J. Liu, and F.S. Pan, Substitution of Ni for Zn on microstructure and mechanical properties of Mg–Gd–Y–Zn–Mn alloy, J. Magnes. Alloys, 5(2017), No. 3, p. 355. doi: 10.1016/j.jma.2017.07.002
      [8]
      W.W. He, E.L. Zhang, and K. Yang, Effect of Y on the bio-corrosion behavior of extruded Mg–Zn–Mn alloy in Hank’s solution, Mater. Sci. Eng. C, 30(2010), No. 1, p. 167. doi: 10.1016/j.msec.2009.09.014
      [9]
      Z.R. Xie, C. Zhang, H.C. Pan, Y.X. Wang, Y.P. Ren, and G.W. Qin, Microstructures and bio-corrosion resistances of as-extruded Mg–Ca alloys with ultra-fine grain size, Rare Met., 2017, DOI: 10.1007/s12598-017-0945-2.
      [10]
      L. Zhang, Z. Liu, and P.L. Mao, Effect of annealing on the microstructure and mechanical properties of Mg−2.5Zn−0.5Y alloy, Int. J. Miner. Metall. Mater., 21(2014), No. 8, p. 779. doi: 10.1007/s12613-014-0971-0
      [11]
      E. Aghion, G. Levy, and S. Ovadia, In vivo behavior of biodegradable Mg–Nd–Y–Zr–Ca alloy, J. Mater. Sci. -Mater. Med., 23(2012), No. 3, p. 805.
      [12]
      Y.Z. Xu, J.Y. Li, M.F. Qi, J.B. Gu, and Y. Zhang, Effect of extrusion on the microstructure and corrosion behaviors of biodegradable Mg–Zn–Y–Gd–Zr alloy, J. Mater. Sci., 55(2020), No. 3, p. 1231. doi: 10.1007/s10853-019-03978-8
      [13]
      S.Q. Yin, W.C. Duan, W.H. Liu, L. Wu, J.M. Yu, Z.L. Zhao, M. Liu, P. Wang, J.Z. Cui, and Z.Q. Zhang, Influence of specific second phases on corrosion behaviors of Mg−Zn−Gd−Zr alloys, Corros. Sci., 166(2020), art. No. 108419. doi: 10.1016/j.corsci.2019.108419
      [14]
      C. Zhang, L. Wu, H. Liu, G.S. Huang, B. Jiang, A. Atrens, and F.S. Pan, Microstructure and corrosion behavior of Mg–Sc binary alloys in 3.5wt% NaCl solution, Corros. Sci., 174(2020), art. No. 108831. doi: 10.1016/j.corsci.2020.108831
      [15]
      T. Kokubo and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(2006), No. 15, p. 2907. doi: 10.1016/j.biomaterials.2006.01.017
      [16]
      D.F. Zhang, X.X. Xu, F.G. Qi, X.X. Guo, and Z.T. Zhu, Research status of yttrium-containing Mg-Zn based magnesium alloys, Foundary, 61(2012), No. 3, p. 266.
      [17]
      J.X. Li, Y. Zhang, J.Y. Li, and J.X. Xie, Effect of trace HA on microstructure, mechanical properties and corrosion behavior of Mg−2Zn−0.5Sr alloy, J. Mater. Sci. Technol., 34(2018), No. 2, p. 299. doi: 10.1016/j.jmst.2017.06.013
      [18]
      Y. Zhang, J.X. Li, and J.Y. Li, Microstructure, mechanical properties, corrosion behavior and film formation mechanism of Mg−Zn−Mn−xNd in Kokubo’s solution, J. Alloys Compd., 730(2018), p. 458. doi: 10.1016/j.jallcom.2017.09.325
      [19]
      H.S. Jiang, Microstructure and Mechanical Properties of High Strength MgZn(Y/Gd)Zr(Ca) Alloys Containing W Phase [Dissertation], Harbin Institute of Technology, Harbin, 2017.

    Catalog


    • /

      返回文章
      返回