留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 12
Dec.  2022

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1139
  • HTML全文浏览量:  357
  • PDF下载量:  87
  • 被引次数: 0
Tangxia Yu, Tao Jiang, Jing Wen, Hongyan Sun, Ming Li,  and Yi Peng, Effect of chemical composition on the element distribution, phase composition and calcification roasting process of vanadium slag, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2144-2151. https://doi.org/10.1007/s12613-021-2334-y
Cite this article as:
Tangxia Yu, Tao Jiang, Jing Wen, Hongyan Sun, Ming Li,  and Yi Peng, Effect of chemical composition on the element distribution, phase composition and calcification roasting process of vanadium slag, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2144-2151. https://doi.org/10.1007/s12613-021-2334-y
引用本文 PDF XML SpringerLink
研究论文

钒渣中化学组元对元素分布、物相和钙化提钒过程的影响

  • 通讯作者:

    姜涛    E-mail: jiangt@smm.neu.edu.cn

    温婧    E-mail: wenjing@smm.neu.edu.cn

文章亮点

  • (1) 系统地比较了七种不同钒渣的微观形貌和物相。
  • (2) 探究了钒渣中不同化学组元对钒渣元素分布和物相的影响。
  • (3) 研究了不同化学组元对钒渣钙化提钒过程的影响。
  • 钒渣中的化学组成对其元素分布和物相组成有重要影响,而物相组成又影响着后序钙化焙烧以及钒的浸出。本文以来自中国不同地区的七种钒渣为原料,使用电子扫描电镜、X射线衍射仪和电感耦合等离子体发射光谱仪,研究了不同组元对钒渣中元素分布、物相组成、钙化焙烧和主要元素浸出率的影响。结果显示:七种钒渣中硅酸盐相均包裹在尖晶石相周围,尖晶石相主要元素从内到外分别为Cr、V和Ti,低铬钒渣的尖晶石相尺寸大于高铬钒渣,高钙高磷钒渣中尖晶石相更为弥散。随着Cr含量增加,含钒尖晶石的最强峰向大角度偏移,且钙化焙烧后有(Fe0.6Cr0.4)2O3形成。高钙高磷钒渣中过量的Ca与Si生成了Ca2SiO4。V浸出率在部分钒渣中超过88%,Cr浸出率均低于5%,Si浸出率在高钙高磷钒渣中高于其他钒渣,Mn浸出率均超过10%,Fe和Ti浸出率较小可忽略。
  • Research Article

    Effect of chemical composition on the element distribution, phase composition and calcification roasting process of vanadium slag

    + Author Affiliations
    • The chemical composition of vanadium slag significantly affects its element distribution and phase composition, which affect the subsequent calcification roasting process and vanadium recovery. In this work, seven kinds of vanadium slags derived from different regions in China were used as the raw materials to study the effects of different components on the vanadium slag’s elements distribution, phase composition, calcification roasting, and leaching rate of major elements using scanning electron microscope, X-ray diffraction analysis, and inductively coupled plasma-optical emission spectroscopy. The results show that the spinel phase is wrapped with silicate phase in all vanadium slag samples. The main elements in the spinel phase are Cr, V, and Ti from the interior to the exterior. The size of spinel phase in low chromium vanadium slag is larger than the other vanadium slags with higher chromium contents. The spinel phase of high-calcium and high-phosphorus vanadium slag is more dispersed. The strongest diffraction peak of vanadium spinel phase in the vanadium slag migrates to a higher diffraction angle, and (Fe0.6Cr0.4)2O3 is formed after calcification roasting as the chromium content increased. A large amount of Ca2SiO4 is produced because excess Ca reacts with Si in high-calcium and high-phosphorus vanadium slag. The vanadium leaching rate reaches 88% in some vanadium slags. The chromium leaching rate is less than 5% in all vanadium slags. The silicon leaching rate of high-calcium and high-phosphorus vanadium slag is much higher than that of the other slags. The leaching rate of manganese is higher than 10%, and the leaching rates of iron and titanium are negligible.
    • loading
    • [1]
      X.B. Zhu, W. Li, and X.M. Guan, Vanadium extraction from titano-magnetite by hydrofluoric acid, Int. J. Miner. Process., 157(2016), p. 55. doi: 10.1016/j.minpro.2016.09.012
      [2]
      Q.W. Yang, Z.M. Xie, H. Peng, Z.H. Liu, and C.Y. Tao, Leaching of vanadium and chromium from converter vanadium slag intensified with surface wettability, J. Cent. South Univ., 25(2018), No. 6, p. 1317. doi: 10.1007/s11771-018-3828-2
      [3]
      B.J. Yan, D.Y. Wang, L.S. Wu, and Y.C. Dong, A novel approach for pre-concentrating vanadium from stone coal ore, Miner. Eng., 125(2018), p. 231. doi: 10.1016/j.mineng.2018.06.005
      [4]
      J. Wen, T. Jiang, Y.Z. Xu, J.Y. Liu, and X.X. Xue, Efficient separation and extraction of vanadium and chromium in high chromium vanadium slag by selective two-stage roasting-leaching, Metall. Mater. Trans. B, 49(2018), No. 3, p. 1471. doi: 10.1007/s11663-018-1197-8
      [5]
      J.Y. Xiang, Q.Y. Huang, X.W. Lv, and C.G. Bai, Extraction of vanadium from converter slag by two-step sulfuric acid leaching process, J. Cleaner Prod., 170(2018), p. 1089. doi: 10.1016/j.jclepro.2017.09.255
      [6]
      X.W. Wang, D.X. Gao, B.F. Chen, Y.Q. Meng, Z.B. Fu, and M.Y. Wang, A clean metallurgical process for separation and recovery of vanadium and chromium from V–Cr-bearing reducing slag, Hydrometallurgy, 181(2018), p. 1. doi: 10.1016/j.hydromet.2018.08.008
      [7]
      G.Q. Zhang, T.A. Zhang, G.Z. Lü, Y. Zhang, Y. Liu, and Z.L. Liu, Extraction of vanadium from vanadium slag by high pressure oxidative acid leaching, Int. J. Miner. Metall. Mater., 22(2015), No. 1, p. 21. doi: 10.1007/s12613-015-1038-6
      [8]
      Y.M. Zhang, L.N. Wang, D.S. Chen, W.J. Wang, Y.H. Liu, H.X. Zhao, and T. Qi, A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 131. doi: 10.1007/s12613-018-1556-0
      [9]
      Z.D. Pang, Y.Y. Jiang, Jiawei Ling, X.W. Lü, and Z.M. Yan, Blast furnace ironmaking process with super high TiO2 in the slag: Density and surface tension of the slag, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1170. doi: 10.1007/s12613-021-2262-x
      [10]
      L.M. Chen, Y.L. Zhen, G.H. Zhang, D.S. Chen, L.N. Wang, H.X. Zhao, F.C. Meng, and T. Qi, Carbothermic reduction of vanadium titanomagnetite with the assistance of sodium carbonate, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 239. doi: 10.1007/s12613-020-2160-7
      [11]
      Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, and J. Huang, The technology of extracting vanadium from stone coal in China: History, current status and future prospects, Hydrometallurgy, 109(2011), No. 1-2, p. 116. doi: 10.1016/j.hydromet.2011.06.002
      [12]
      T. Jiang, J. Wen, M. Zhou, and X.X. Xue, Phase evolutions, microstructure and reaction mechanism during calcification roasting of high chromium vanadium slag, J. Alloys Compd., 742(2018), p. 402. doi: 10.1016/j.jallcom.2018.01.201
      [13]
      M. Li, B. Liu, S.L. Zheng, S.N. Wang, H. Du, D.B. Dreisinger, and Y. Zhang, A cleaner vanadium extraction method featuring non-salt roasting and ammonium bicarbonate leaching, J. Cleaner Prod., 149(2017), p. 206. doi: 10.1016/j.jclepro.2017.02.093
      [14]
      X.S. Li and B. Xie, Extraction of vanadium from high calcium vanadium slag using direct roasting and soda leaching, Int. J. Miner. Metall. Mater., 19(2012), No. 7, p. 595. doi: 10.1007/s12613-012-0600-8
      [15]
      B.Y. Liu, P.Y. Shi, and M.F. Jiang, Effect of Na2CO3/V2O5 molar ratio on phase transformation and leaching behavior of vanadium slag, Multipurpose Util. Miner. Resour., 2018, No. 4, p. 79. doi: 10.3969/j.issn.1000-6532.2018.04.018
      [16]
      Z.X. Shi, Characterization of variation of vanadium spinel and fayalite during the calcination of vanadium slag, Nonferrous Met., 2018, No. 4, p. 4.
      [17]
      Y. Yang, Study on the Evolution Law of Vanadium during the Interface Reaction Process of Vanadium Slag Sodium Roasting [Dissertation], Chongqing University, Chongqing, 2018, p. 15.
      [18]
      J.Y. Xiang, X. Wang, G.S. Pei, Q.Y. Huang, and X.W. Lü, Solid-state reaction of a CaO−V2O5 mixture: A fundamental study for the vanadium extraction process, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1462. doi: 10.1007/s12613-020-2136-7
      [19]
      B. Shen, Temperature control of acid leaching process for calcified clinker of vanadium slag, Iron Steel Vanadium Titanium, 39(2018), No. 5, p. 30. doi: 10.7513/j.issn.1004-7638.2018.05.006
      [20]
      N.X. Fu, L. Zhang, W.H. Liu, B. Zhao, G.F. Tu, and Z.T. Sui, Mechanism analysis of phase transformation process in calcified roasting of vanadium slags, Chin. J. Nonferrous Met., 28(2018), No. 2, p. 377. doi: 10.19476/j.ysxb.1004.0609.2018.02.20
      [21]
      J. Wen, T. Jiang, M. Zhou, H.Y. Gao, J.Y. Liu, and X.X. Xue, Roasting and leaching behaviors of vanadium and chromium in calcification roasting-acid leaching of high-chromium vanadium slag, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 515. doi: 10.1007/s12613-018-1598-3
      [22]
      J. Wen, T. Jiang, Y.J. Liu, and X.X. Xue, Extraction behavior of vanadium and chromium by calcification roasting-acid leaching from high chromium vanadium slag: Optimization using response surface methodology, Miner. Process. Extr. Metall. Rev., 40(2019), No. 1, p. 56. doi: 10.1080/08827508.2018.1481059
      [23]
      X.M. Yan, B. Xie, L. Jiang, H.P. Guo, and H.Y. Li, Leaching of vanadium from the roasted vanadium slag with high calcium content by direct roasting and soda leaching, [in] N.R. Neelameggham, S. Alam, H. Oosterhof, A. Jha, D. Dreisinger, S.J. Wang, eds., Rare Metal Technology 2015, Springer, Cham, 2015, p. 209.
      [24]
      J. Wen, T. Jiang, Y.Z. Xu, J. Cao, and X.X. Xue, Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting–(NH4)2SO4 leaching, J. Ind. Eng. Chem., 71(2019), p. 327. doi: 10.1016/j.jiec.2018.11.043
      [25]
      T.X. Yu, J. Cao, J. Wen, H.Y. Sun, and T. Jiang, Selection of additives for vanadium slag calcification roasting and process optimization, J. Mater. Metall., 19(2020), No. 3, p. 176. doi: 10.14186/j.cnki.1671-6620.2020.03.004
      [26]
      C.M. Wang, J.Y. Liu, Z.X. Shi, and T.Y. Yuan, Discussion on the influence factor of vanadium slag phase structure and calcification roasting phase transition on vanadium conversion rate, Metall. Anal., 35(2015), No. 6, p. 26. doi: 10.13228/j.boyuan.issn1000-7571.009519
      [27]
      Y.J. Hu, Y.M. Zhang, S.X. Bao, and T. Liu, Effects of the mineral phase and valence of vanadium on vanadium extraction from stone coal, Int. J. Miner. Metall. Mater., 19(2012), No. 10, p. 893. doi: 10.1007/s12613-012-0644-9
      [28]
      Y.J. Liang and Y.C. Che, Handle of Inorganic Thermodynamic Data, Publishing Company of Northeast University, Shenyang, 1993.
      [29]
      W. Zhou, Investigate on Crystallization Kinetics of Spinels and Selective Separating Vanadium and Phosphorus in Vanadium Slag with High CaO and P2O5 Content [Dissertation], Chongqing University, Chongqing, 2017, p. 18.

    Catalog


    • /

      返回文章
      返回