留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 1
Jan.  2022

图(10)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  7543
  • HTML全文浏览量:  3428
  • PDF下载量:  1091
  • 被引次数: 0
Qian Li, Xi Lin, Qun Luo, Yuʼan Chen, Jingfeng Wang, Bin Jiang,  and Fusheng Pan, Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 32-48. https://doi.org/10.1007/s12613-021-2337-8
Cite this article as:
Qian Li, Xi Lin, Qun Luo, Yuʼan Chen, Jingfeng Wang, Bin Jiang,  and Fusheng Pan, Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 32-48. https://doi.org/10.1007/s12613-021-2337-8
引用本文 PDF XML SpringerLink
特约综述封面文章

储氢合金的吸/放氢反应过程动力学

    * 共同第一作者
  • 通讯作者:

    李谦    E-mail: cquliqian@cqu.edu.cn

文章亮点

  • (1) 系统地综述了储氢合金吸/放氢过程不同控速步骤的动力学模型。
  • (2) 概述了定容法和恒流法的吸放氢动力学数据的分析方法。
  • (3) 总结了不同类型储氢合金的吸/放氢动力学研究结果。
  • 氢能具有无污染、可再生的特性,被认为是未来减少碳排放的主要途径之一。储氢合金因其体积储氢密度高、安全性好、吸放氢条件温和、循环次数高、成本低等优势,未来将在氢能行业中得到广泛应用。而高吸/放氢速率是储氢合金罐应用的重要前提。通过对储氢合金吸/放氢机制的研究,有利于储氢合金吸/放氢速率的改性增强。而等温吸/放氢动力学模型是研究吸/放氢机制的有效手段。研究人员已经建立了许多模型来描述吸/放氢动力学过程。然而,这些动力学模型仅适用于特定的动力学控速步骤和动力学测试方法,容易导致动力学模型的错误使用。如何使用合适的动力学模型对储氢合金的吸/放氢过程进行研究,进而揭示正确的吸/放氢机制,是许多不熟悉吸/放氢动力学过程的研究人员面临的实际问题。本文基于不同的动力学测量方法,对化学吸附、表面渗透、氢扩散、形核生长和化学反应等控速步骤对应的动力学模型进行了概述,阐述了动力学实验数据的分析方法,以及温度、氢气压力和粒径对动力学参数的影响,总结了不同储氢合金的动力学应用情况。

  • Invited Review

    Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review

    + Author Affiliations
    • High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks. The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism. Multitudinous kinetic models have been developed to describe the kinetic process. However, these kinetic models were deduced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps (RCSs), which sometimes lead to confusion during application. The kinetic analysis procedures using these kinetic models, as well as the key kinetic parameters, are unclear for many researchers who are unfamiliar with this field. These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys. Thus, this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption, surface penetration, diffusion of hydrogen, nucleation and growth, and chemical reaction processes. The analysis procedures of kinetic experimental data are expounded, as well as the effects of temperature, hydrogen pressure, and particle radius. The applications of the kinetic models for different hydrogen storage alloys are also introduced.

    • loading
    • [1]
      B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, Metal hydride materials for solid hydrogen storage: A review, Int. J. Hydrogen Energy, 32(2007), No. 9, p. 1121. doi: 10.1016/j.ijhydene.2006.11.022
      [2]
      T.Y. Wei, K.L. Lim, Y.S. Tseng, and S.L.I. Chan, A review on the characterization of hydrogen in hydrogen storage materials, Renewable Sustainable Energy Rev., 79(2017), p. 1122. doi: 10.1016/j.rser.2017.05.132
      [3]
      Y. Li, L.N. Cheng, W.K. Miao, C.X. Wang, D.Z. Kuang, and S.M. Han, Nd−Mg−Ni alloy electrodes modified by reduced graphene oxide with improved electrochemical kinetics, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 391. doi: 10.1007/s12613-019-1880-z
      [4]
      H.Q. Nguyen and B. Shabani, Proton exchange membrane fuel cells heat recovery opportunities for combined heating/cooling and power applications, Energy Convers. Manage., 204(2020), art. No. 112328. doi: 10.1016/j.enconman.2019.112328
      [5]
      C.S. Park, K. Jung, S.U. Jeong, K.S. Kang, Y.H. Lee, Y.S. Park, and B.H. Park, Development of hydrogen storage reactor using composite of metal hydride materials with ENG, Int. J. Hydrogen Energy, 45(2020), No. 51, p. 27434. doi: 10.1016/j.ijhydene.2020.07.062
      [6]
      X. Lin, H.G. Yang, Q. Zhu, and Q. Li, Numerical simulation of a metal hydride tank with LaNi4.25Al0.75 using a novel kinetic model at constant flows, Chem. Eng. J., 401(2020), art. No. 126115. doi: 10.1016/j.cej.2020.126115
      [7]
      Y. Ye, J.F. Lu, J. Ding, W.L. Wang, and J.Y. Yan, Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank, Appl. Energy, 278(2020), art. No. 115682. doi: 10.1016/j.apenergy.2020.115682
      [8]
      W.C. He, X.W. Lü, C.Y. Ding, and Z.M. Yan, Oxidation pathway and kinetics of titania slag powders during cooling process in air, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 981. doi: 10.1007/s12613-020-2019-y
      [9]
      X.Y. Shen, Y.Y. Liang, H.M. Shao, Y. Sun, Y. Liu, and Y.C. Zhai, Extraction and kinetic analysis of Pb and Sr from the leaching residue of zinc oxide ore, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 201. doi: 10.1007/s12613-020-1972-9
      [10]
      M.M. Sun, J.L. Zhang, K.J. Li, K. Guo, Z.M. Wang, and C.H. Jiang, Gasification kinetics of bulk coke in the CO2/CO/H2/H2O/N2 system simulating the atmosphere in the industrial blast furnace, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1247. doi: 10.1007/s12613-019-1846-1
      [11]
      X.F. Zhu, T.A. Zhang, and G.Z. Lü, Kinetics of carbonated decomposition of hydrogarnet with different silica saturation coefficients, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 472. doi: 10.1007/s12613-019-1913-7
      [12]
      C.S. Wang, X.H. Wang, Y.Q. Lei, C.P. Chen, and Q.D. Wang, The hydriding kinetics of MlNi5—I. Development of the model, Int. J. Hydrogen Energy, 21(1996), No. 6, p. 471. doi: 10.1016/0360-3199(95)00109-3
      [13]
      T.Z. Si, X.Y. Zhang, J.J. Feng, X.L. Ding, and Y.T. Li, Enhancing hydrogen sorption in MgH2 by controlling particle size and contact of Ni catalysts, Rare Met., 40(2021), No. 4, p. 995. doi: 10.1007/s12598-018-1087-x
      [14]
      Y.P. Pang and Q. Li, A review on kinetic models and corresponding analysis methods for hydrogen storage materials, Int. J. Hydrogen Energy, 41(2016), No. 40, p. 18072. doi: 10.1016/j.ijhydene.2016.08.018
      [15]
      G. Chen, Y. Zhang, J. Chen, X.L. Guo, Y.F. Zhu, and L.Q. Li, Enhancing hydrogen storage performances of MgH2 by Ni nano-particles over mesoporous carbon CMK-3, Nanotechnol., 29(2018), No. 26, art. No. 265705. doi: 10.1088/1361-6528/aabcf3
      [16]
      L.E.R. Vega, D.R. Leiva, R.M. Leal Neto, W.B. Silva, R.A. Silva, T.T. Ishikawa, C.S. Kiminami, and W.J. Botta, Improved ball milling method for the synthesis of nanocrystalline TiFe compound ready to absorb hydrogen, Int. J. Hydrogen Energy, 45(2020), No. 3, p. 2084. doi: 10.1016/j.ijhydene.2019.11.035
      [17]
      H.Q. Kou, H. He, W.H. Luo, T. Tang, Z.Y. Huang, H. Wang, J.C. Bao, Y. Xue, S.H. Pei, and W.D. Liu, Effects of ball milling on hydrogen sorption properties and microstructure of ZrCo alloy, Fusion Eng. Des., 138(2019), p. 68. doi: 10.1016/j.fusengdes.2018.11.006
      [18]
      W. Jander, Reaktionen im festen Zustande Bei höheren Temperaturen. Reaktionsgeschwindigkeiten endotherm verlaufender Umsetzungen, Z. Anorg. Allg. Chem., 163(1927), No. 1, p. 1. doi: 10.1002/zaac.19271630102
      [19]
      Z.J. Cao, L.Z. Ouyang, H. Wang, J.W. Liu, L.X. Sun, M. Felderhoff, and M. Zhu, Development of ZrFeV alloys for hybrid hydrogen storage system, Int. J. Hydrogen Energy, 41(2016), No. 26, p. 11242. doi: 10.1016/j.ijhydene.2016.04.083
      [20]
      K.C. Chou, Q. Li, Q. Lin, L.J. Jiang, and K.D. Xu, Kinetics of absorption and desorption of hydrogen in alloy powder, Int. J. Hydrogen Energy, 30(2005), No. 3, p. 301. doi: 10.1016/j.ijhydene.2004.04.006
      [21]
      Q. Li, K.C. Chou, Q. Lin, L.J. Jiang, and F. Zhan, Influence of the initial hydrogen pressure on the hydriding kinetics of the Mg2−xAlxNi (x = 0, 0.1) alloys, Int. J. Hydrogen Energy, 29(2004), No. 13, p. 1383. doi: 10.1016/j.ijhydene.2004.01.007
      [22]
      Q. Luo, X.H. An, Y.B. Pan, X. Zhang, J.Y. Zhang, and Q. Li, The hydriding kinetics of Mg-Ni based hydrogen storage alloys: A comparative study on Chou model and Jander model, Int. J. Hydrogen Energy, 35(2010), No. 15, p. 7842. doi: 10.1016/j.ijhydene.2010.05.073
      [23]
      X.Y. Cui, Q. Li, K.C. Chou, S.L. Chen, G.W. Lin, and K.D. Xu, A comparative study on the hydriding kinetics of Zr-based AB2 hydrogen storage alloys, Intermetallics, 16(2008), No. 5, p. 662. doi: 10.1016/j.intermet.2008.02.009
      [24]
      X.H. An, Y.B. Pan, Q. Luo, X. Zhang, J.Y. Zhang, and Q. Li, Application of a new kinetic model for the hydriding kinetics of LaNi5−xAlx (0 ≤ x ≤ 1.0) alloys, J. Alloys Compd., 506(2010), No. 1, p. 63. doi: 10.1016/j.jallcom.2010.07.016
      [25]
      Y.B. Pan, Y.F. Wu, and Q. Li, Modeling and analyzing the hydriding kinetics of Mg–LaNi5 composites by Chou model, Int. J. Hydrogen Energy, 36(2011), No. 20, p. 12892. doi: 10.1016/j.ijhydene.2011.06.145
      [26]
      Q. Li, L.J. Jiang, K.C. Chou, Q. Lin, F. Zhan, K.D. Xu, X.G. Lu, and J.Y. Zhang, Effect of hydrogen pressure on hydriding kinetics in the Mg2−xAgxNi-H (x = 0.05, 0.1) system, J. Alloys Compd., 399(2005), No. 1-2, p. 101. doi: 10.1016/j.jallcom.2005.03.010
      [27]
      Q. Luo, J.D. Li, B. Li, B. Liu, H.Y. Shao, and Q. Li, Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism, J. Magnesium Alloys, 7(2019), No. 1, p. 58. doi: 10.1016/j.jma.2018.12.001
      [28]
      Y.P. Pang, D.K. Sun, Q.F. Gu, K.C. Chou, X.L. Wang, and Q. Li, Comprehensive determination of kinetic parameters in solid-state phase transitions: An extended jonhson–mehl–avrami–kolomogorov model with analytical solutions, Cryst. Growth Des., 16(2016), No. 4, p. 2404. doi: 10.1021/acs.cgd.6b00187
      [29]
      Q. Luo, Q.F. Gu, B. Liu, T.F. Zhang, W.Q. Liu, and Q. Li, Achieving superior cycling stability by in situ forming NdH2–Mg–Mg2Ni nanocomposites, J. Mater. Chem. A, 6(2018), No. 46, p. 23308. doi: 10.1039/C8TA06668J
      [30]
      Y.H. Zhang, W. Zhang, J.L. Gao, X. Wei, T.T. Zhai, and Y. Cai, Improved hydrogen storage kinetics of Mg-based alloys by substituting La with Sm, Int. J. Hydrogen Energy, 45(2020), No. 41, p. 21588. doi: 10.1016/j.ijhydene.2020.05.144
      [31]
      X.L. Yang, Q.H. Hou, L.B. Yu, and J.Q. Zhang, Improvement of the hydrogen storage characteristics of MgH2 with a flake Ni nano-catalyst composite, Dalton Trans., 50(2021), No. 5, p. 1797. doi: 10.1039/D0DT03627G
      [32]
      Y.H. Zhang, X. Wei, W. Zhang, Z.M. Yuan, J.L. Gao, Y. Qi, and H.P. Ren, Effect of milling duration on hydrogen storage thermodynamics and kinetics of Mg-based alloy, Int. J. Hydrogen Energy, 45(2020), No. 58, p. 33832. doi: 10.1016/j.ijhydene.2020.09.144
      [33]
      K.C. Chou and K.D. Xu, A new model for hydriding and dehydriding reactions in intermetallics, Intermetallics, 15(2007), No. 5-6, p. 767. doi: 10.1016/j.intermet.2006.10.004
      [34]
      A. Khawam and D.R. Flanagan, Solid-state kinetic models: Basics and mathematical fundamentals, J. Phys. Chem. B, 110(2006), No. 35, p. 17315. doi: 10.1021/jp062746a
      [35]
      J. Bloch and M.H. Mintz, Kinetics and mechanisms of metal hydrides formation—A review, J. Alloys Compd., 253-254(1997), p. 529. doi: 10.1016/S0925-8388(96)03070-8
      [36]
      J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnesium Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
      [37]
      W. Jiang, H. Wang, and M. Zhu, AlH3 as a hydrogen storage material: Recent advances, prospects and challenges, Rare Met., 40(2021), No. 12, p. 3337. doi: 10.1007/s12598-021-01769-2
      [38]
      P.S. Rudman, Hydriding and dehydriding kinetics, J. Less Common Met., 89(1983), No. 1, p. 93. doi: 10.1016/0022-5088(83)90253-9
      [39]
      D.P. Broom, Hydrogen Storage Materials: The Characterisation of Their Storage Properties, Springer, London, 2011.
      [40]
      C. Aharoni and F.C. Tompkins, Kinetics of adsorption and desorption and the elovich equation, Adv. Catal., 21(1970), p. 1.
      [41]
      A. Ginstling and B. Brounshtein, Concerning the diffusion kinetics of reactions in spherical particles, J. Appl. Chem. USSR, 23(1950), p. 1327.
      [42]
      R.E. Carter, Kinetic model for solid-state reactions, J. Chem. Phys., 34(1961), No. 6, p. 2010. doi: 10.1063/1.1731812
      [43]
      F. Booth, A note on the theory of surface diffusion reactions, Trans. Faraday Soc., 44(1948), art. No. 796. doi: 10.1039/tf9484400796
      [44]
      K.C. Chou, Q. Luo, Q. Li, and J.Y. Zhang, Influence of the density of oxide on oxidation kinetics, Intermetallics, 47(2014), p. 17. doi: 10.1016/j.intermet.2013.11.024
      [45]
      J. Crank, The Mathematics of Diffusion, 2nd ed., Oxford university press, London, 1979.
      [46]
      A.T.W. Kempen, F. Sommer, and E.J. Mittemeijer, Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth, J. Mater. Sci., 37(2002), No. 7, p. 1321. doi: 10.1023/A:1014556109351
      [47]
      J.W. Christian, Eutectoidal transformations, [in] The Theory of Transformations in Metals and Alloys, Amsterdam, Elsevier, 2002, p. 797.
      [48]
      J.T. Carstensen, Stability of solids and solid dosage forms, J. Pharm. Sci., 63(1974), No. 1, p. 1. doi: 10.1002/jps.2600630103
      [49]
      X. Lin, W. Xie, Q. Zhu, H.G. Yang, and Q. Li, Rational optimization of metal hydride tank with LaNi4.25Al0.75 as hydrogen storage medium, Chem. Eng. J., 421(2021), art. No. 127844. doi: 10.1016/j.cej.2020.127844
      [50]
      X.H. Wang, C.S. Wang, C.P. Chen, Y.Q. Lei and Q.D. Wang, The hydriding kinetics of MlNi5—II. Experimental results, Int. J. Hydrogen Energy, 21(1996), No. 6, p. 479. doi: 10.1016/0360-3199(95)00111-5
      [51]
      X. Lin, D.K. Sun, S.L. Chen, Q. Zhu, H.Y. Leng, and Q. Li, Numerical analysis on pulverization and self-densification for hydrogen storage performance of a metal hydride tank, Appl. Therm. Eng., 161(2019), art. No. 114129. doi: 10.1016/j.applthermaleng.2019.114129
      [52]
      X. Lin, Q. Zhu, H.Y. Leng, H.G. Yang, T. Lyu, and Q. Li, Numerical analysis of the effects of particle radius and porosity on hydrogen absorption performances in metal hydride tank, Appl. Energy, 250(2019), p. 1065. doi: 10.1016/j.apenergy.2019.04.181
      [53]
      J. Nam, J. Ko, and H. Ju, Three-dimensional modeling and simulation of hydrogen absorption in metal hydride hydrogen storage vessels, Appl. Energy, 89(2012), No. 1, p. 164. doi: 10.1016/j.apenergy.2011.06.015
      [54]
      D. Wang, Y.Q. Wang, Z.N. Huang, F.S. Yang, Z. Wu, L. Zheng, L. Wu, and Z.X. Zhang, Design optimization and sensitivity analysis of the radiation mini-channel metal hydride reactor, Energy, 173(2019), p. 443. doi: 10.1016/j.energy.2019.02.033
      [55]
      T. Yang, P. Wang, C.Q. Xia, Q. Li, C.Y. Liang, and Y.H. Zhang, Characterization of microstructure, hydrogen storage kinetics and thermodynamics of a melt-spun Mg86Y10Ni4 alloy, Int. J. Hydrogen Energy, 44(2019), No. 13, p. 6728. doi: 10.1016/j.ijhydene.2019.01.148
      [56]
      Y.H. Zhang, X.F. Li, Y. Cai, Y. Qi, S.H. Guo, and D.L. Zhao, Improved hydrogen storage performances of Mg−Y−Ni−Cu alloys by melt spinning, Renew. Energy, 138(2019), p. 263. doi: 10.1016/j.renene.2019.01.106
      [57]
      K.S. Nahm, W.Y. Kim, S.P. Hong, and W.Y. Lee, The reaction kinetics of hydrogen storage in LaNi5, Int. J. Hydrogen Energy, 17(1992), No. 5, p. 333. doi: 10.1016/0360-3199(92)90169-W
      [58]
      J.W. Oh, C.Y. Kim, K.S. Nahm, and K.S. Sim, The hydriding kinetics of LaNi4.5Al0.5 with hydrogen, J. Alloys Compd., 278(1998), No. 1-2, p. 270. doi: 10.1016/S0925-8388(98)00565-9
      [59]
      M.N. Mungole and R. Balasubramaniam, Hydrogen desorption kinetics in MmNi4.2Al0.8−H system, Int. J. Hydrogen Energy, 23(1998), No. 5, p. 349. doi: 10.1016/S0360-3199(97)00050-5
      [60]
      Q. Li, Q. Lin, K.C. Chou, L.J. Jiang, and F. Zhan, Hydriding kinetics of the La1.5Ni0.5Mg17−H system prepared by hydriding combustion synthesis, Intermetallics, 12(2004), No. 12, p. 1293. doi: 10.1016/j.intermet.2004.03.024
      [61]
      R.A. Jat, S.C. Parida, J. Nuwad, R. Agarwal, and S.G. Kulkarni, Hydrogen sorption−desorption studies on ZrCo−hydrogen system, J. Therm. Anal. Calorim., 112(2013), No. 1, p. 37. doi: 10.1007/s10973-012-2783-7
      [62]
      L. Jai-Young, C.N. Park, and S.M. Pyun, The activation processes and hydriding kinetics of FeTi, J. Less Common Met., 89(1983), No. 1, p. 163. doi: 10.1016/0022-5088(83)90262-X
      [63]
      E. Bershadsky, A. Klyuch, and M. Ron, Hydrogen absorption and desorption kinetics of TiFe0.8Ni0.2H, Int. J. Hydrogen Energy, 20(1995), No. 1, p. 29. doi: 10.1016/0360-3199(93)E0011-9
      [64]
      R. Ramesh, Y.V.G.S. Murti, K.V. Reddy, K.V.S. Rama Rao, and T.P. Das, The kinetics of hydrogen absorption in Zr1−xHoxCo2 (x = 0.4, 0.6 and 0.8) alloys, J. Alloys Compd., 205(1994), No. 1-2, p. 211. doi: 10.1016/0925-8388(94)90791-9
      [65]
      X.C. Kong, J.L. Du, K. Wang, Z.L. Li, and Z. Wu, Kinetics of hydrogen absorption for Ti33V20Cr47 alloy powder, Rare Met. Mater. Eng., 41(2012), No. 11, p. 1899. doi: 10.1016/S1875-5372(13)60018-1
      [66]
      Q. Li, K.C. Chou, Q. Lin, L.J. Jiang, and F. Zhan, Hydrogen absorption and desorption kinetics of Ag−Mg−Ni alloys, Int. J. Hydrogen Energy, 29(2004), No. 8, p. 843. doi: 10.1016/j.ijhydene.2003.10.002
      [67]
      G. Liang, J. Huot, S. Boily, A. Van Neste, and R. Schulz, Hydrogen storage properties of the mechanically milled MgH2−V nanocomposite, J. Alloys Compd., 291(1999), No. 1-2, p. 295. doi: 10.1016/S0925-8388(99)00268-6
      [68]
      G. Liang, J. Huot, S. Boily, and R. Schulz, Hydrogen desorption kinetics of a mechanically milled MgH2+5at.%V nanocomposite, J. Alloys Compd., 305(2000), No. 1-2, p. 239. doi: 10.1016/S0925-8388(00)00708-8
      [69]
      E. Akiba, K. Nomura, S. Ono, and S. Suda, Kinetics of the reaction between Mg–Ni alloys and H2, Int. J. Hydrogen Energy, 7(1982), No. 10, p. 787. doi: 10.1016/0360-3199(82)90069-6
      [70]
      R.D. Penzhorn, M. Sirch, A.N. Perevezentsev, and A.N. Borisenko, Hydrogen sorption rate by intermetallic compounds suitable for tritium storage, Fusion Technol., 28(1995), No. 3P2, p. 1399. doi: 10.13182/FST95-A30607
      [71]
      E. Bershadsky, Y. Josephy, and M. Ron, Investigation of kinetics and structural changes in TiFe0.8 Ni0.2 after prolonged cycling, J. Less Common Met., 172-174(1991), p. 1036. doi: 10.1016/S0022-5088(06)80009-3
      [72]
      Y.F. Liu, K. Zhong, K. Luo, M.X. Gao, H.G. Pan, and Q.D. Wang, Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li–Mg–N–H system, J. Am. Chem. Soc., 131(2009), No. 5, p. 1862. doi: 10.1021/ja806565t
      [73]
      K. Zhong, Y.F. Liu, M.X. Gao, J.H. Wang, H. Miao, and H.G. Pan, Electrochemical kinetic performance of V−Ti−based hydrogen storage alloy electrode with different particle sizes, Int. J. Hydrogen Energy, 33(2008), No. 1, p. 149. doi: 10.1016/j.ijhydene.2007.09.006
      [74]
      S. Shriniwasan, H.Y. Tien, M. Tanniru, and S.S.V. Tatiparti, On the parameters of Johnson-Mehl-Avrami-Kolmogorov equation for the hydride growth mechanisms: A case of MgH2, J. Alloys Compd., 742(2018), p. 1002. doi: 10.1016/j.jallcom.2017.12.283
      [75]
      M. Miyamoto, K. Yamaji, and Y. Nakata, Reaction kinetics of LaNi5, J. Less Common Met., 89(1983), No. 1, p. 111. doi: 10.1016/0022-5088(83)90254-0
      [76]
      O. Boser, Hydrogen sorption in LaNi5, J. Less Common Met., 46(1976), No. 1, p. 91. doi: 10.1016/0022-5088(76)90182-X
      [77]
      P.D. Goodell and P.S. Rudman, Hydriding and dehydriding rates of the LaNi5−H system, J. Less Common Met., 89(1983), No. 1, p. 117. doi: 10.1016/0022-5088(83)90255-2
      [78]
      J.T. Koh, A.J. Goudy, P. Huang, and G. Zhou, A comparison of the hydriding and dehydriding kinetics of LaNI5 hydride, J. Less Common Met., 153(1989), No. 1, p. 89. doi: 10.1016/0022-5088(89)90536-5
      [79]
      A. Zarynow, A.J. Goudy, R.G. Schweibenz, and K.R. Clay, The effect of the partial replacement of nickelin LaNi5 hydride with iron, cobalt, and copper on absorption and desorption kinetics, J. Less Common Met., 172-174(1991), p. 1009. doi: 10.1016/S0022-5088(06)80006-8
      [80]
      P. Muthukumar, A. Satheesh, M. Linder, R. Mertz, and M. Groll, Studies on hydriding kinetics of some La-based metal hydride alloys, Int. J. Hydrogen Energy, 34(2009), No. 17, p. 7253. doi: 10.1016/j.ijhydene.2009.06.075
      [81]
      S. Shriniwasan, H. Goswami, H.Y. Tien, M. Tanniru, F. Ebrahimi, and S.S.V. Tatiparti, Contributions of multiple phenomena towards hydrogenation: A case of Mg, J. Alloys Compd., 40(2015), No. 39, p. 13518. doi: 10.1016/j.ijhydene.2015.08.018
      [82]
      G.L. Liu, D.M. Chen, Y.M. Wang, and K. Yang, Experimental and computational investigations of LaNi5−xAlx (x = 0, 0.25, 0.5, 0.75 and 1.0) tritium-storage alloys, J. Mater. Sci. Technol., 34(2018), No. 9, p. 1699. doi: 10.1016/j.jmst.2018.01.007
      [83]
      X.L. Wang and S. Suda, Effects of Al-substitution on hydriding reaction rates of LaNi5−xAlx, J. Alloys Compd., 191(1993), No. 1, p. 5. doi: 10.1016/0925-8388(93)90262-L
      [84]
      J.M. Joubert, V. Paul-Boncour, F. Cuevas, J.X. Zhang, and M. Latroche, LaNi5 related AB5 compounds: Structure, properties and applications, J. Alloys Compd., 862(2021), art. No. 158163. doi: 10.1016/j.jallcom.2020.158163
      [85]
      R. Balasubramaniam, M.N. Mungole, and K.N. Rai, Hydriding properties of MmNi5 system with aluminium, manganese and tin substitutions, J. Alloys Compd., 196(1993), No. 1-2, p. 63. doi: 10.1016/0925-8388(93)90571-4
      [86]
      M. Jurczyk, W. Rajewski, W. Majchrzycki, and G. Wójcik, Mechanically alloyed MmNi5-type materials for metal hydride electrodes, J. Alloys Compd., 290(1999), No. 1-2, p. 262. doi: 10.1016/S0925-8388(99)00202-9
      [87]
      M. Kandavel, V.V. Bhat, A. Rougier, L. Aymard, G.A. Nazri, and J.M. Tarascon, Improvement of hydrogen storage properties of the AB2 Laves phase alloys for automotive application, Int. J. Hydrogen Energy, 33(2008), No. 14, p. 3754. doi: 10.1016/j.ijhydene.2008.04.042
      [88]
      F.C. Ruiz, E.B. Castro, H.A. Peretti, and A. Visintin, Study of the different ZrxNiy phases of Zr-based AB2 materials, Int. J. Hydrogen Energy, 35(2010), No. 18, p. 9879. doi: 10.1016/j.ijhydene.2009.10.004
      [89]
      C.B. Wan, X.P. Jiang, X.H. Yin, and X. Ju, High-capacity Zr-based AB2-type alloys as metal hydride battery anodes, J. Alloys Compd., 828(2020), art. No. 154402. doi: 10.1016/j.jallcom.2020.154402
      [90]
      Y.H. Xu, C.P. Chen, X.L. Wang, Y.Q. Lei, and Q.D. Wang, The cycle life and surface properties of Ti-based AB2 metal hydride electrodes, J. Alloys Compd., 337(2002), No. 1-2, p. 214. doi: 10.1016/S0925-8388(01)01917-X
      [91]
      U. Ulmer, M. Dieterich, A. Pohl, R. Dittmeyer, M. Linder, and M. Fichtner, Study of the structural, thermodynamic and cyclic effects of vanadium and titanium substitution in laves-phase AB2 hydrogen storage alloys, Int. J. Hydrogen Energy, 42(2017), No. 31, p. 20103. doi: 10.1016/j.ijhydene.2017.06.137
      [92]
      J.G. Li, Y.R. Guo, X.J. Jiang, S. Li, and X.G. Li, Hydrogen storage performances, kinetics and microstructure of Ti1.02Cr1.0Fe0.7−xMn0.3Alx alloy by Al substituting for Fe, Renew. Energy, 153(2020), p. 1140. doi: 10.1016/j.renene.2020.02.035
      [93]
      T.R. Kesavan, S. Ramaprabhu, K.V.S. Rama Rao, and T.P. Das, Hydrogen absorption and kinetic studies in Zr0.2Ho0.8Fe2, J. Alloys Compd., 244(1996), No. 1-2, p. 164. doi: 10.1016/S0925-8388(96)02413-9
      [94]
      F. Wang, R.F. Li, C.P. Ding, J. Wan, R.H. Yu, and Z.M. Wang, Effect of catalytic Ni coating with different depositing time on the hydrogen storage properties of ZrCo alloy, Int. J. Hydrogen Energy, 41(2016), No. 39, p. 17421. doi: 10.1016/j.ijhydene.2016.07.077
      [95]
      L.L. Luo, X.Q. Ye, G.H. Zhang, H.Q. Kou, R.J. Xiong, G. Sang, R.H. Yu, and D.L. Zhao, Enhancement of hydrogenation kinetics and thermodynamic properties of ZrCo1–x Cr x (x = 0–0.1) alloys for hydrogen storage, Chin. Phys. B, 29(2020), No. 8, art. No. 088801. doi: 10.1088/1674-1056/ab9289
      [96]
      J. Zhang, S. Yan, G.L. Xia, X.J. Zhou, X.Z. Lu, L.P. Yu, X.B. Yu, and P. Peng, Stabilization of low-valence transition metal towards advanced catalytic effects on the hydrogen storage performance of magnesium hydride, J. Magnesium Alloys, 9(2021), No. 2, p. 647. doi: 10.1016/j.jma.2020.02.029
      [97]
      P.Y. Yao, Y. Jiang, Y. Liu, C.Z. Wu, K.C. Chou, T. Lyu, and Q. Li, Catalytic effect of Ni@rGO on the hydrogen storage properties of MgH2, J. Magnesium Alloys, 8(2020), No. 2, p. 461. doi: 10.1016/j.jma.2019.06.006
      [98]
      L.Z. Ouyang, F. Liu, H. Wang, J.W. Liu, X.S. Yang, L.X. Sun, and M. Zhu, Magnesium-based hydrogen storage compounds: A review, J. Alloys Compd., 832(2020), art. No. 154865. doi: 10.1016/j.jallcom.2020.154865
      [99]
      M. Ismail, M.S. Yahya, N.A. Sazelee, N.A. Ali, F.A.H. Yap, and N.S. Mustafa, The effect of K2SiF6 on the MgH2 hydrogen storage properties, J. Magnesium Alloys, 8(2020), No. 3, p. 832. doi: 10.1016/j.jma.2020.04.002
      [100]
      P. Meena, R. Singh, V.K. Sharma, and I.P. Jain, Role of NiMn9.3Al4.0Co14.1Fe3.6 alloy on dehydrogenation kinetics of MgH2, J. Magnesium Alloys, 6(2018), No. 3, p. 318. doi: 10.1016/j.jma.2018.05.007
      [101]
      Q. Luo, Q.F. Gu, J.Y. Zhang, S.L. Chen, K.C. Chou, and Q. Li, Phase equilibria, crystal structure and hydriding/dehydriding mechanism of Nd4Mg80Ni8 compound, Sci. Rep., 5(2015), art. No. 15385. doi: 10.1038/srep15385
      [102]
      Y.S. Lu, M. Zhu, H. Wang, Z.M. Li, L.Z. Ouyang, and J.W. Liu, Reversible de-/hydriding characteristics of a novel Mg18In1Ni3 alloy, Int. J. Hydrogen Energy, 39(2014), No. 26, p. 14033. doi: 10.1016/j.ijhydene.2014.07.016
      [103]
      Q. Li, K.C. Chou, K.D. Xu, Q. Lin, L.J. Jiang, and F. Zhan, Determination and interpretation of the hydriding and dehydriding kinetics in mechanically alloyed LaNiMg17 composite, J. Alloys Compd., 387(2005), No. 1-2, p. 86. doi: 10.1016/j.jallcom.2004.06.034
      [104]
      S. Long, J.X. Zou, X. Chen, X.Q. Zeng, and W.J. Ding, A comparison study of Mg−Y2O3 and Mg−Y hydrogen storage composite powders prepared through arc plasma method, J. Alloys Compd., 615(2014), p. S684. doi: 10.1016/j.jallcom.2013.11.159
      [105]
      L.Z. Ouyang, X.S. Yang, M. Zhu, J.W. Liu, H.W. Dong, D.L. Sun, J. Zou, and X.D. Yao, Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH2.73 and Ni in CeH2.73−MgH2−Ni nanocomposites, J. Phys. Chem. C, 118(2014), No. 15, p. 7808. doi: 10.1021/jp500439n
      [106]
      Y. Sun, D.B. Wang, J.M. Wang, B.Z. Liu, and Q.M. Peng, Hydrogen storage properties of ultrahigh pressure Mg12NiY alloys with a superfine LPSO structure, Int. J. Hydrogen Energy, 44(2019), No. 41, p. 23179. doi: 10.1016/j.ijhydene.2019.06.191
      [107]
      L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, and M. Zhu, Dual-tuning effect of In on the thermodynamic and kinetic properties of Mg2Ni dehydrogenation, Int. J. Hydrogen Energy, 38(2013), No. 21, p. 8881. doi: 10.1016/j.ijhydene.2013.05.027
      [108]
      T. Liu, C.G. Chen, F. Wang, and X.G. Li, Enhanced hydrogen storage properties of magnesium by the synergic catalytic effect of TiH1.971 and TiH1.5 nanoparticles at room temperature, J. Power Sources, 267(2014), p. 69. doi: 10.1016/j.jpowsour.2014.05.066
      [109]
      C.M. Stander, Kinetics of formation of magnesium hydride from magnesium and hydrogen, Z. Phys. Chem., 104(1977), No. 4-6, p. 229. doi: 10.1524/zpch.1977.104.4-6.229
      [110]
      M.H. Mintz, Z. Gavra, and Z. Hadari, Kinetic study of the reaction between hydrogen and magnesium, catalyzed by addition of indium, J. Inorg. Nucl. Chem., 40(1978), No. 5, p. 765. doi: 10.1016/0022-1902(78)80147-X
      [111]
      S. Shriniwasan, H.Y. Tien, M. Tanniru, F. Ebrahimi, and S.S.V. Tatiparti, Transition from interfacial to diffusional growth during hydrogenation of Mg, Mater. Lett., 161(2015), p. 271. doi: 10.1016/j.matlet.2015.08.116
      [112]
      P. Trivedi and K.C. Nune, Bioactivity, cytocompatibility and effect of cells on degradation behavior of Mg–2Zn–2Gd alloy, Nanomater. Energy, 8(2019), No. 2, p. 117. doi: 10.1680/jnaen.18.00019
      [113]
      T.C. Xie, H. Shi, H.B. Wang, Q. Luo, Q. Li, and K.C. Chou, Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg–Zn–La/Ce system, J. Mater. Sci. Technol., 97(2022), p. 147. doi: 10.1016/j.jmst.2021.04.044
      [114]
      Y. Li, Q.F. Gu, Q. Li, and T.F. Zhang, In-situ synchrotron X-ray diffraction investigation on hydrogen-induced decomposition of long period stacking ordered structure in Mg-Ni-Y system, Scripta Mater., 127(2017), p. 102. doi: 10.1016/j.scriptamat.2016.09.011
      [115]
      G. Liang, Synthesis and hydrogen storage properties of Mg-based alloys, J. Alloys Compd., 370(2004), No. 1-2, p. 123. doi: 10.1016/j.jallcom.2003.09.031
      [116]
      H. Yong, S.H. Guo, Z.M. Yuan, Y. Qi, D.L. Zhao, and Y.H. Zhang, Improved hydrogen storage kinetics and thermodynamics of RE−Mg-based alloy by co-doping Ce−Y, Int. J. Hydrogen Energy, 44(2019), No. 31, p. 16765. doi: 10.1016/j.ijhydene.2019.04.281
      [117]
      K.B. Wu, Q. Luo, S.L. Chen, Q.F. Gu, K.C. Chou, X.L. Wang, and Q. Li, Phase equilibria of Ce−Mg−Ni ternary system at 673 K and hydrogen storage properties of selected alloy, Int. J. Hydrogen Energy, 41(2016), No. 3, p. 1725. doi: 10.1016/j.ijhydene.2015.11.068
      [118]
      D. Khan, J.X. Zou, X.Q. Zeng, and W.J. Ding, Hydrogen storage properties of nanocrystalline Mg2Ni prepared from compressed 2MgH2−Ni powder, Int. J. Hydrogen Energy, 43(2018), No. 49, p. 22391. doi: 10.1016/j.ijhydene.2018.10.055
      [119]
      M.H. Li, Y.F. Zhu, C. Yang, J.G. Zhang, W. Chen, and L.Q. Li, Enhanced electrochemical hydrogen storage properties of Mg2NiH4 by coating with nano-nickel, Int. J. Hydrogen Energy, 40(2015), No. 40, p. 13949.
      [120]
      T. Kohno, S. Tsuruta, and M. Kanda, The hydrogen storage properties of new Mg2Ni alloy, J. Electrochem. Soc., 143(1996), No. 9, p. L198. doi: 10.1149/1.1837085
      [121]
      J.S. Han and J.Y. Lee, A study of the hydriding kinetics of Mg2Ni, J. Less Common Met., 131(1987), No. 1-2, p. 109. doi: 10.1016/0022-5088(87)90506-6
      [122]
      L.Q. Li, I. Saita, K. Saito, and T. Akiyama, Effect of synthesis temperature on the hydriding behaviors of Mg−Ni−Cu ternary hydrogen storage alloys synthesized by hydriding combustion synthesis, J. Alloys Compd., 372(2004), No. 1-2, p. 218. doi: 10.1016/j.jallcom.2003.08.108
      [123]
      H.J. Lin, C. Zhang, H. Wang, L.Z. Ouyang, Y.F. Zhu, L.Q. Li, W.H. Wang, and M. Zhu, Controlling nanocrystallization and hydrogen storage property of Mg-based amorphous alloy via a gas-solid reaction, J. Alloys Compd., 685(2016), p. 272. doi: 10.1016/j.jallcom.2016.05.286
      [124]
      J.J. Jiang, H.Y. Leng, J. Meng, K.C. Chou, and Q. Li, Hydrogen storage characterization of Mg17Ni1.5Ce0.5/5 wt.% Graphite synthesized by mechanical milling and subsequent microwave sintering, Int. J. Energy Res., 37(2013), No. 7, p. 726. doi: 10.1002/er.2980
      [125]
      Z.Y. Lu, H.J. Yu, X. Lu, M.C. Song, F.Y. Wu, J.G. Zheng, Z.F. Yuan, and L.T. Zhang, Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2, Rare Met., 40(2021), No. 11, p. 3195. doi: 10.1007/s12598-021-01764-7
      [126]
      Z.Q. Lan, L. Zeng, G. Jiong, X. Huang, H.Z. Liu, N. Hua, and J. Guo, Synthetical catalysis of nickel and graphene on enhanced hydrogen storage properties of magnesium, Int. J. Hydrogen Energy, 44(2019), No. 45, p. 24849. doi: 10.1016/j.ijhydene.2019.07.247
      [127]
      G. Liang, J. Huot, S. Boily, A. Van Neste, and R. Schulz, Hydrogen storage in mechanically milled Mg−LaNi5 and MgH2−LaNi5 composites, J. Alloys Compd., 297(2000), No. 1-2, p. 261. doi: 10.1016/S0925-8388(99)00592-7
      [128]
      M. Ismail, Y. Zhao, X.B. Yu, and S.X. Dou, Improved hydrogen storage performance of MgH2−NaAlH4 composite by addition of TiF3, Int. J. Hydrogen Energy, 37(2012), No. 10, p. 8395. doi: 10.1016/j.ijhydene.2012.02.117

    Catalog


    • /

      返回文章
      返回