留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 3
Mar.  2022

图(5)

数据统计

分享

计量
  • 文章访问数:  1332
  • HTML全文浏览量:  603
  • PDF下载量:  133
  • 被引次数: 0
Natpichan Pienutsa, Krittamet Yannawibut, Jetthana Phattharaphongmanee, Oukrit Thonganantakul, and Sira Srinives, Titanium dioxide-graphene composite electrochemical sensor for detection of hexavalent chromium, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 529-535. https://doi.org/10.1007/s12613-021-2338-7
Cite this article as:
Natpichan Pienutsa, Krittamet Yannawibut, Jetthana Phattharaphongmanee, Oukrit Thonganantakul, and Sira Srinives, Titanium dioxide-graphene composite electrochemical sensor for detection of hexavalent chromium, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 529-535. https://doi.org/10.1007/s12613-021-2338-7
引用本文 PDF XML SpringerLink
研究论文

用于检测六价铬的二氧化钛-石墨烯复合电化学传感器

  • 通讯作者:

    Sira Srinives    E-mail: sira.sri@mahidol.edu

  • 六价铬 (Cr(VI)) 化合物可用于各种行业,但具有毒性和致癌性。本文使用二氧化钛 (TiO­2) -还原氧化石墨烯 (rGO) 复合材料作为传感元件,制造了一种用于测定 Cr(VI) 的电流传感器。该复合材料是按照溶胶−凝胶化学合成的,产生尺寸约为 50 nm 的 TiO2 纳米颗粒,固定在化学剥离的 rGO 片材上。该复合材料用于三电极电化学电池并以电流模式运行,对 50−500 ppb Cr(VI) 表现出良好的响应。对 pH 3 Mcilvane 缓冲介质的最佳结果显示灵敏度为 9.12 × 10−4 ppb−1,检测限为 6 ppb,200 ppm Ca(II)、150 ppm Mg(II) 和 50 ppb Pb(II) 没有信号干扰。TiO2-rGO 传感器的优异结果可归因于TiO2和 rGO 之间的协同效应,这是由于 n-p 异质结的存在和 rGO 上TiO2 纳米颗粒的形成。

  • Research Article

    Titanium dioxide-graphene composite electrochemical sensor for detection of hexavalent chromium

    + Author Affiliations
    • Hexavalent chromium (Cr(VI)) compound is useful to various industries but is toxic and carcinogenic. In this research work, we fabricate an amperometric sensor for the determination of Cr(VI), using a titanium dioxide (TiO2)-reduced graphene oxide (rGO) composite as the sensing element. The composite was synthesized following sol−gel chemistry, yielding TiO2 nanoparticles of ~50 nm in size, immobilized on chemically exfoliated rGO sheets. The composite was employed in a 3-electrode electrochemical cell and operated in an amperometric mode, exhibiting good responses to the 50 to 500 ppb Cr(VI). Our best result from pH 3 Mcilvane’s buffer medium reveals the sensitivity of 9.12 × 10−4 ppb−1 and a detection limit of 6 ppb with no signal interference from 200 ppm Ca(II), 150 ppm Mg(II), and 50 ppb Pb(II). The excellent results of the TiO2-rGO sensor can be attributed to synergic effects between TiO2 and rGO, resulting from the presence of n-p heterojunctions and the formation of the TiO2 nanoparticles on rGO.

    • loading
    • [1]
      F. Xu, T. Ma, L. Zhou, Z.F. Hu, and L. Shi, Chromium isotopic fractionation during Cr(VI) reduction by Bacillus sp. under aerobic conditions, Chemosphere, 130(2015), p. 46. doi: 10.1016/j.chemosphere.2015.02.033
      [2]
      Y.S. Hedberg and C. Lidén, Chromium(III) and chromium(VI) release from leather during 8 months of simulated use, Contact Dermat., 75(2016), No. 2, p. 82. doi: 10.1111/cod.12581
      [3]
      B. Kim, S. Kim, and H. Kim, Effects of alloying elements (Cr, Mn) on corrosion properties of the high-strength steel in 3.5% NaCl solution, Adv. Mater. Sci. Eng., 2018(2018), p. 1.
      [4]
      J. Kotaś and Z. Stasicka, Chromium occurrence in the environment and methods of its speciation, Environ. Pollut., 107(2000), No. 3, p. 263. doi: 10.1016/S0269-7491(99)00168-2
      [5]
      K.K. Krishnani, S. Srinives, B.C. Mohapatra, V.M. Boddu, J.M. Hao, X. Meng, and A. Mulchandani, Hexavalent chromium removal mechanism using conducting polymers, J. Hazard. Mater., 252-253(2013), p. 99. doi: 10.1016/j.jhazmat.2013.01.079
      [6]
      S.A. Miscoria, C. Jacq, T. Maeder, and R. Martín Negri, Screen-printed electrodes for electroanalytical sensing, of chromium VI in strong acid media, Sens. Actuators B, 195(2014), p. 294. doi: 10.1016/j.snb.2014.01.013
      [7]
      A. Zazoua, S. Zougar, R. Kherrat, M.H. Samar, N. Jaffrezic-Renault, A. Errachid, and A. Abbaci, Development of a hexavalent chromium ISFET sensor with a polymeric membrane including tributylphosphate, Mater. Sci. Eng. C, 26(2006), No. 2-3, p. 568. doi: 10.1016/j.msec.2005.10.010
      [8]
      Y.M. Chen, Y.Q. Dong, H. Wu, C.Q. Chen, Y.W. Chi, and G.N. Chen, Electrochemiluminescence sensor for hexavalent chromium based on the graphene quantum dots/peroxodisulfate system, Electrochim. Acta, 151(2015), p. 552. doi: 10.1016/j.electacta.2014.11.068
      [9]
      L.E. Korshoj, A.J. Zaitouna, and R.Y. Lai, Methylene blue-mediated electrocatalytic detection of hexavalent chromium, Anal. Chem., 87(2015), No. 5, p. 2560. doi: 10.1021/acs.analchem.5b00197
      [10]
      Y. Ku and I.L. Jung, Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide, Water Res., 35(2001), No. 1, p. 135. doi: 10.1016/S0043-1354(00)00098-1
      [11]
      V. Loryuenyong, N. Jarunsak, T. Chuangchai, and A. Buasri, The photocatalytic reduction of hexavalent chromium by controllable mesoporous anatase TiO2 nanoparticles, Adv. Mater. Sci. Eng., 2014(2014), art. No. 348427.
      [12]
      K. Chen, Z.L. Zhang, Y.M. Liang, and W. Liu, A graphene-based electrochemical sensor for rapid determination of phenols in water, Sensors, 13(2013), No. 5, p. 6204. doi: 10.3390/s130506204
      [13]
      B.S. He and J.W. Li, A sensitive electrochemical sensor based on reduced graphene oxide/Fe3O4 nanorod composites for detection of nitrofurantoin and its metabolite, Anal. Methods, 11(2019), No. 11, p. 1427. doi: 10.1039/C9AY00197B
      [14]
      T.K. Sari, F. Takahashi, J.Y. Jin, R. Zein, and E. Munaf, Electrochemical determination of chromium(VI) in river water with gold nanoparticles-graphene nanocomposites modified electrodes, Anal. Sci., 34(2018), No. 2, p. 155. doi: 10.2116/analsci.34.155
      [15]
      S.M. Zhu, J.J. Guo, J.P. Dong, Z.W. Cui, T. Lu, C.L. Zhu, D. Zhang, and J. Ma, Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors, Ultrason. Sonochem., 20(2013), No. 3, p. 872. doi: 10.1016/j.ultsonch.2012.12.001
      [16]
      J.L. Zhang, H.J. Yang, G.X. Shen, P. Cheng, J.Y. Zhang, and S.W. Guo, Reduction of graphene oxide vial-ascorbic acid, Chem. Commun., 46(2010), No. 7, p. 1112. doi: 10.1039/B917705A
      [17]
      K. Alamelu, V. Raja, L. Shiamala, and B.M. Jaffar Ali, Biphasic TiO2 nanoparticles decorated graphene nanosheets for visible light driven photocatalytic degradation of organic dyes, Appl. Surf. Sci., 430(2018), p. 145. doi: 10.1016/j.apsusc.2017.05.054
      [18]
      Y.P. Zhang and C.X. Pan, TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light, J. Mater. Sci., 46(2011), No. 8, p. 2622. doi: 10.1007/s10853-010-5116-x
      [19]
      Y. Zhao, D.L. Zhao, C.L. Chen, and X.K. Wang, Enhanced photo-reduction and removal of Cr(VI) on reduced graphene oxide decorated with TiO2 nanoparticles, J. Colloid Interface Sci., 405(2013), p. 211. doi: 10.1016/j.jcis.2013.05.004
      [20]
      E. Lee, D. Lee, J. Yoon, Y.L. Yin, Y.N. Lee, S. Uprety, Y.S. Yoon, and D.J. Kim, Enhanced gas-sensing performance of GO/TiO2 composite by photocatalysis, Sensors, 18(2018), No. 10, art. No. 3334. doi: 10.3390/s18103334
      [21]
      Y. Haldorai, A. Rengaraj, C.H. Kwak, Y.S. Huh, and Y.K. Han, Fabrication of nano TiO2@graphene composite: Reusable photocatalyst for hydrogen production, degradation of organic and inorganic pollutants, Synth. Met., 198(2014), p. 10. doi: 10.1016/j.synthmet.2014.09.034
      [22]
      M. Szabó, J. Kalmár, T. Ditrói, G. Bellér, G. Lente, N. Simic, and I. Fábián, Equilibria and kinetics of chromium(VI) speciation in aqueous solution − A comprehensive study from pH 2 to 11, Inorg. Chim. Acta, 472(2018), p. 295. doi: 10.1016/j.ica.2017.05.038

    Catalog


    • /

      返回文章
      返回