Abstract:
Metal halide perovskite solar cells have attracted considerable attention because of their high-power conversion efficiency and cost-effective solution-processable fabrication; however, they exhibit poor structural stability. Two-dimensional (2D) Ruddlesden–Popper (RP) perovskites could address the aforementioned issue and present excellent stability because of their hydrophobic organic spacer cations. However, the crystallographic orientation of 2D crystals should be perpendicular to the bottom substrates for charges to transport fast and be collected in solar cells. Moreover, controlling the crystallographic orientation of the 2D RP perovskites prepared by the solution process is difficult. Herein, we reviewed the progress of recent research regarding 2D RP perovskite films with the focus on the crystallographic orientation mechanism and orientation controlling methods. Furthermore, the current issues and prospects of 2D RP perovskites in the photovoltaic field were discussed to elucidate their development and application in the future.