留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 3
Mar.  2022

图(5)

数据统计

分享

计量
  • 文章访问数:  1169
  • HTML全文浏览量:  707
  • PDF下载量:  79
  • 被引次数: 0
Xiaolan Tong, Hao Hu, Xingzhong Zhao,  and Qidong Tai, In situ carbon coating for enhanced chemical stability of copper nanowires, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 557-562. https://doi.org/10.1007/s12613-021-2343-x
Cite this article as:
Xiaolan Tong, Hao Hu, Xingzhong Zhao,  and Qidong Tai, In situ carbon coating for enhanced chemical stability of copper nanowires, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 557-562. https://doi.org/10.1007/s12613-021-2343-x
引用本文 PDF XML SpringerLink
研究论文

原位碳包覆增强铜纳米线的化学稳定性

  • 通讯作者:

    赵兴中    E-mail: xzzhao@whu.edu.cn

    台启东    E-mail: qdtai@whu.edu.cn

文章亮点

  • (1) 提出了增强铜纳米线稳定性的原位碳包覆方法。
  • (2) 系统研究了碳包覆膜厚度及均匀度的影响因素及控制方法。
  • (3) 实现了铜纳米线抗氧化及抗化学腐蚀稳定性的显著提升。
  • 铜纳米线(CuNWs)具有成本低、导电性高、透明及柔韧性好等优点,且铜元素在地表储量丰富,是极为理想的电极材料,特别是用作于柔性及透明电极。然而铜纳米线稳定性差,极易被空气氧化和受化学环境腐蚀,这极大的限制了它们的实际应用。在本文中,我们提出了一种利用水热碳化方法在铜纳米线表面进行原位碳包覆的保护策略,可以有效地增强其化学稳定性。我们系统研究了影响碳膜生长的各种因素,包括葡萄糖前驱体浓度(碳源)、水热温度及水热时间等。我们发现在葡萄糖浓度为 80 mg·mL−1左右,水热温度为 160–170°C,水热时间为1–3 h的条件下,可以在铜纳米线表面均匀生长厚度为3–8 nm的碳膜。所制备的碳包覆铜纳米线(CuNWs@C)表现出优异的抗氧化和抗腐蚀稳定性,在光电子器件领域具有广阔的应用潜力。

  • Research Article

    In situ carbon coating for enhanced chemical stability of copper nanowires

    + Author Affiliations
    • Copper nanowires (CuNWs) are promising electrode materials, especially for used in flexible and transparent electrodes, due to their advantages of earth-abundant, low-cost, high conductivity and flexibility. However, the poor stability of CuNWs against oxidation and chemical corrosion seriously hinders their practical applications. Herein, we propose a facile strategy to improve the chemical stability of CuNWs by in situ coating of carbon protective layer on top of them through hydrothermal carbonization method. The influential factors on the growth of carbon film including the concentration of the glucose precursor (carbon source), hydrothermal temperature, and hydrothermal time are systematically studied. By tailoring these factors, carbon layers with thickness of 3–8 nm can be uniformly grown on CuNWs with appropriate glucose concentration around 80 mg·mL−1, hydrothermal temperature of 160–170°C, and hydrothermal time of 1–3 h. The as-prepared carbon-coated CuNWs show excellent resistance against corrosion and oxidation, and are of great potential to use broadly in various optoelectronic devices.

    • loading
    • [1]
      S.R. Ye, A.R. Rathmell, Z.F. Chen, I.E. Stewart, and B.J. Wiley, Metal nanowire networks: The next generation of transparent conductors, Adv. Mater., 26(2014), No. 39, p. 6670. doi: 10.1002/adma.201402710
      [2]
      T. Sannicolo, M. Lagrange, A. Cabos, C. Celle, J.P. Simonato, and D. Bellet, Metallic nanowire-based transparent electrodes for next generation flexible devices: A review, Small, 12(2016), No. 44, p. 6052. doi: 10.1002/smll.201602581
      [3]
      W.T. Li, H. Zhang, S.W. Shi, J.X. Xu, X. Qin, Q.Q. He, K.C. Yang, W.B. Dai, G. Liu, Q.G. Zhou, H.Z. Yu, S.R.P. Silva, and M. Fahlman, Recent progress in silver nanowire networks for flexible organic electronics, J. Mater. Chem. C, 8(2020), No. 14, p. 4636. doi: 10.1039/C9TC06865A
      [4]
      S.A. Hashemi, S. Ramakrishna, and A.G. Aberle, Recent progress in flexible–wearable solar cells for self-powered electronic devices, Energy Environ. Sci., 13(2020), No. 3, p. 685. doi: 10.1039/C9EE03046H
      [5]
      D.R. Wang, Y.K. Zhang, X. Lu, Z.J. Ma, C. Xie, and Z.J. Zheng, Chemical formation of soft metal electrodes for flexible and wearable electronics, Chem. Soc. Rev., 47(2018), No. 12, p. 4611. doi: 10.1039/C7CS00192D
      [6]
      H.F. Lu, X.G. Ren, D. Ouyang, and W.C.H. Choy, Emerging novel metal electrodes for photovoltaic applications, Small, 14(2018), No. 14, art. No. 1703140. doi: 10.1002/smll.201703140
      [7]
      A.R. Rathmell, S.M. Bergin, Y.L. Hua, Z.Y. Li, and B.J. Wiley, The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films, Adv. Mater., 22(2010), No. 32, p. 3558. doi: 10.1002/adma.201000775
      [8]
      E.Y. Ye, S.Y. Zhang, S.H. Liu, and M.Y. Han, Disproportionation for growing copper nanowires and their controlled self-assembly facilitated by ligand exchange, Chem. A Eur. J., 17(2011), No. 11, p. 3074. doi: 10.1002/chem.201002987
      [9]
      A.R. Rathmell and B.J. Wiley, The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates, Adv. Mater., 23(2011), No. 41, p. 4798. doi: 10.1002/adma.201102284
      [10]
      M.S. Jin, G.N. He, H. Zhang, J. Zeng, Z.X. Xie, and Y.N. Xia, Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent, Angew. Chem. Int. Ed., 50(2011), No. 45, p. 10560. doi: 10.1002/anie.201105539
      [11]
      D.Q. Zhang, R.R. Wang, M.C. Wen, D. Weng, X. Cui, J. Sun, H.X. Li, and Y.F. Lu, Synthesis of ultralong copper nanowires for high-performance transparent electrodes, J. Am. Chem. Soc., 134(2012), No. 35, p. 14283. doi: 10.1021/ja3050184
      [12]
      Y. Cheng, S.L. Wang, R.R. Wang, J. Sun, and L. Gao, Copper nanowire based transparent conductive films with high stability and superior stretchability, J. Mater. Chem. C, 2(2014), No. 27, p. 5309. doi: 10.1039/C4TC00375F
      [13]
      H. Hwang, A. Kim, Z.Y. Zhong, H.C. Kwon, S. Jeong, and J. Moon, Reducible-shell-derived pure-copper-nanowire network and its application to transparent conducting electrodes, Adv. Funct. Mater., 26(2016), No. 36, p. 6545. doi: 10.1002/adfm.201602094
      [14]
      Z.X. Yin, S.K. Song, S. Cho, D.J. You, J. Yoo, S.T. Chang, and Y.S. Kim, Curved copper nanowires-based robust flexible transparent electrodes via all-solution approach, Nano Res., 10(2017), No. 9, p. 3077. doi: 10.1007/s12274-017-1523-5
      [15]
      L.T. Dou, F. Cui, Y. Yu, G. Khanarian, S.W. Eaton, Q. Yang, J. Resasco, C. Schildknecht, K. Schierle-Arndt, and P.D. Yang, Solution-processed copper/reduced-graphene-oxide core/shell nanowire transparent conductors, ACS Nano, 10(2016), No. 2, p. 2600. doi: 10.1021/acsnano.5b07651
      [16]
      Y. Ahn, Y. Jeong, D. Lee, and Y. Lee, Copper nanowire–graphene core–shell nanostructure for highly stable transparent conducting electrodes, ACS Nano, 9(2015), No. 3, p. 3125. doi: 10.1021/acsnano.5b00053
      [17]
      J.Y. Chen, W.X. Zhou, J. Chen, Y. Fan, Z.Q. Zhang, Z.D. Huang, X.M. Feng, B.X. Mi, Y.W. Ma, and W. Huang, Solution-processed copper nanowire flexible transparent electrodes with PEDOT:PSS as binder, protector and oxide-layer scavenger for polymer solar cells, Nano Res., 8(2015), No. 3, p. 1017. doi: 10.1007/s12274-014-0583-z
      [18]
      Y. Won, A. Kim, D. Lee, W. Yang, K. Woo, S. Jeong, and J. Moon, Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics, NPG Asia Mater., 6(2014), No. 6, art. No. e105. doi: 10.1038/am.2014.36
      [19]
      I.N. Kholmanov, S.H. Domingues, H. Chou, X.H. Wang, C. Tan, J.Y. Kim, H.F. Li, R. Piner, A.J.G. Zarbin, and R.S. Ruoff, Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes, ACS Nano, 7(2013), No. 2, p. 1811. doi: 10.1021/nn3060175
      [20]
      P.C. Hsu, H. Wu, T.J. Carney, M.T. McDowell, Y. Yang, E.C. Garnett, M. Li, L. Hu, and Y. Cui, Passivation coating on electrospun copper nanofibers for stable transparent electrodes, ACS Nano, 6(2012), No. 6, p. 5150. doi: 10.1021/nn300844g
      [21]
      I.E. Stewart, A.R. Rathmell, L. Yan, S.R. Ye, P.F. Flowers, W. You, and B.J. Wiley, Solution-processed copper–nickel nanowire anodes for organic solar cells, Nanoscale, 6(2014), No. 11, p. 5980. doi: 10.1039/c4nr01024h
      [22]
      M.M. Titirici and M. Antonietti, Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization,, Chem. Soc. Rev., 39(2010), No. 1, p. 103. doi: 10.1039/B819318P
      [23]
      X.M. Sun and Y.D. Li, Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles, Angew. Chem. Int. Ed., 43(2004), No. 5, p. 597. doi: 10.1002/anie.200352386
      [24]
      M. Noh, Y. Kwon, H. Lee, J. Cho, Y. Kim, and M.G. Kim, Amorphous carbon-coated tin anode material for lithium secondary battery, Chem. Mater., 17(2005), No. 8, p. 1926. doi: 10.1021/cm0481372
      [25]
      E.K. Athanassiou, R.N. Grass, and W.J. Stark, Large-scale production of carbon-coated copper nanoparticles for sensor applications, Nanotechnology, 17(2006), No. 6, p. 1668. doi: 10.1088/0957-4484/17/6/022
      [26]
      X.W. Lou, J.S. Chen, P. Chen, and L.A. Archer, One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties, Chem. Mater., 21(2009), No. 13, p. 2868. doi: 10.1021/cm900613d
      [27]
      Q.D. Tai, B.L. Chen, F. Guo, S. Xu, H. Hu, B. Sebo, and X.Z. Zhao, In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells, ACS Nano, 5(2011), No. 5, p. 3795. doi: 10.1021/nn200133g
      [28]
      Q.D. Tai, C.H. Bu, B.L. Chen, N.G. Zhang, S.H. Bai, H. Hu, S. Xu, and X.Z. Zhao, A methylene bridged bisimidazolium iodide based low-volatility electrolyte for efficient dye-sensitized solar cells, J. Renewable Sustainable Energy, 5(2013), No. 4, art. No. 043121. doi: 10.1063/1.4817733
      [29]
      Q.D. Tai, X.Y. Guo, G.Q. Tang, P. You, T.W. Ng, D. Shen, J.P. Cao, C.K. Liu, N.X. Wang, Y. Zhu, C.S. Lee, and F. Yan, Antioxidant grain passivation for air-stable tin-based perovskite solar cells, Angew. Chem. Int. Ed., 58(2019), No. 3, p. 806. doi: 10.1002/anie.201811539
      [30]
      J. Ahn, H. Hwang, S. Jeong, and J. Moon, Metal-nanowire-electrode-based perovskite solar cells: Challenging issues and new opportunities, Adv. Energy Mater., 7(2017), No. 15, art. No. 1602751. doi: 10.1002/aenm.201602751
      [31]
      H.Y. Zhang, R. Li, W.W. Liu, M. Zhang, and M. Guo, Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 387. doi: 10.1007/s12613-019-1748-2
      [32]
      T. Yang, Y.P. Zheng, K.C. Chou, and X.M. Hou, Tunable fabrication of single-crystalline CsPbI3 nanobelts and their application as photodetectors, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1030. doi: 10.1007/s12613-020-2173-2
      [33]
      Y. Kato, L.K. Ono, M.V. Lee, S.H. Wang, S.R. Raga, and Y.B. Qi, Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes, Adv. Mater. Interfaces, 2(2015), No. 13, art. No. 1500195. doi: 10.1002/admi.201500195
      [34]
      X.D. Li, S. Fu, W.X. Zhang, S.Z. Ke, W.J. Song, and J.F. Fang, Chemical anti-corrosion strategy for stable inverted perovskite solar cells, Sci. Adv., 6(2020), No. 51, art. No. eabd1580. doi: 10.1126/sciadv.abd1580

    Catalog


    • /

      返回文章
      返回