留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 2
Feb.  2023

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1176
  • HTML全文浏览量:  580
  • PDF下载量:  91
  • 被引次数: 0
Yingbo Dong, Shijia Chong,  and Hai Lin, Bioleaching and biosorption behavior of vanadium-bearing stone coal by Bacillus mucilaginosus, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 283-292. https://doi.org/10.1007/s12613-021-2344-9
Cite this article as:
Yingbo Dong, Shijia Chong,  and Hai Lin, Bioleaching and biosorption behavior of vanadium-bearing stone coal by Bacillus mucilaginosus, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 283-292. https://doi.org/10.1007/s12613-021-2344-9
引用本文 PDF XML SpringerLink
研究论文

胶质芽孢杆菌对含钒石煤的生物浸出及其吸附行为

  • 通讯作者:

    林海    E-mail: linhai@ces.ustb.edu.cn

文章亮点

  • (1) 获得了不同作用模式下胶质芽孢杆菌对石煤中钒的浸出规律。
  • (2) 揭示了不同影响因素下胶质芽孢杆菌在石煤颗粒表面的吸附特征。
  • (3) 系统地分析了菌体在石煤颗粒表面的吸附动力学行为与吸附机理。
  • 微生物浸出含钒石煤中金属钒具有绿色、经济等优势。本文以典型硅酸盐细菌—胶质芽孢杆菌作为浸钒菌种,采用浸出和吸附试验,系统研究了胶质芽孢杆菌对含钒石煤的浸出行为及其在矿物表面的吸附特性和相关机理。研究发现,胶质芽孢杆菌在30°C条件下浸出含钒石煤28 天后,金属钒的累积浸出率达到了60.2%,表现出较好的浸钒效果。在众多影响浸出效果的因素中,含钒石煤表面的生物吸附行为至关重要,当浸出体系的pH值为5.0时,菌体与含钒石煤之间的强静电引力可有效促进生物吸附作用,处于对数生长期的胶质芽孢杆菌更具有优良的生物吸附特性,当初始菌体浓度为3.5 × 108 CFU/mL时,吸附量达到3.6 × 107 CFU/g,吸附率为38.9%。机理研究发现,胶质芽孢杆菌在含钒石煤表面的生物吸附过程符合Freundlich等温吸附模型和准二级吸附动力学模型,该过程属于非均质的多层吸附,且主要受化学反应控制。菌体表面的–CH2、–CH3、–NH2等官能团参与了吸附过程,生物吸附作用改变了含钒石煤的表面性质,导致其等电点(IEP)向胶质芽孢杆菌的等电点靠近。
  • Research Article

    Bioleaching and biosorption behavior of vanadium-bearing stone coal by Bacillus mucilaginosus

    + Author Affiliations
    • The recovery of vanadium (V) from stone coal by bioleaching is a promising method. The bioleaching experiments and the biosorption experiments were carried out, aiming to explore the adsorption characteristics of Bacillus mucilaginosus (B. mucilaginosus) on the surface of vanadium-bearing stone coal, and the related mechanisms have been investigated. After bioleaching at 30°C for 28 d, the cumulative leaching rate of V reached 60.2%. The biosorption of B. mucilaginosus on stone coal was affected by many factors. When the pH value of leaching system is 5.0, strong electrostatic attraction between bacteria and stone coal promoted biosorption. Bacteria in the logarithmic growth phase had mature and excellent biosorption properties. The initial bacterial concentration of 3.5 × 108 CFU/mL was conducive to adhesion, with 38.9% adsorption rate and 3.6 × 107 CFU/g adsorption quantity. The adsorption of B. mucilaginosus on the stone coal conformed to the Freundlich model and the pseudo-second-order kinetic model. Bacterial surface carried functional groups (–CH2, –CH3, –NH2, etc.), which were highly correlated with the adsorption behavior. In addition, biosorption changed the surface properties of stone coal, resulting in the isoelectric point (IEP) approaching the bacteria. The results could provide an effective reference for the adsorption laws of bacteria on minerals.
    • loading
    • [1]
      M.A. Faramarzi, M. Mogharabi-Manzari, and H. Brandl, Bioleaching of metals from wastes and low-grade sources by HCN-forming microorganisms, Hydrometallurgy, 191(2020), art. No. 105228. doi: 10.1016/j.hydromet.2019.105228
      [2]
      H.F. Zhao, H.Y. Yang, L.L. Tong, Q. Zhang, and Y. Kong, Biooxidation–thiosulfate leaching of refractory gold concentrate, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1075. doi: 10.1007/s12613-020-1964-9
      [3]
      S.H. Yin, L.M. Wang, A.X. Wu, X. Chen, and R.F. Yan, Research progress in enhanced bioleaching of copper sulfides under the intervention of microbial communities, Int. J. Miner. Metall. Mater., 26(2019), No. 11, p. 1337. doi: 10.1007/s12613-019-1826-5
      [4]
      Y.B. Dong, H. Lin, Y. Liu, and Y. Zhao, Blank roasting and bioleaching of stone coal for vanadium recycling, J. Clean. Prod., 243(2020), art. No. 118625. doi: 10.1016/j.jclepro.2019.118625
      [5]
      Y. Lv, J. Li, H.P. Ye, et al., Bioleaching of silicon in electrolytic manganese residue using single and mixed silicate bacteria, Bioprocess Biosyst. Eng., 42(2019), No. 11, p. 1819. doi: 10.1007/s00449-019-02178-7
      [6]
      Y.F. Zhou, R.C. Wang, X.C. Lu, and T.H. Chen, Roles of adhered Paenibacillus polymyxa in the dissolution and flotation of bauxite: A dialytic investigation, Front. Earth Sci. China, 4(2010), No. 2, p. 167. doi: 10.1007/s11707-010-0021-9
      [7]
      Z. Xue, Z.Y. Nie, H.C. Liu, et al., Effect of the surface microstructure of arsenopyrite on the attachment of Sulfobacillus thermosulfidooxidans in the presence of dissolved As(III), Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1135. doi: 10.1007/s12613-020-2231-9
      [8]
      H. Abdollahi, M. Noaparast, S.Z. Shafaei, et al., Silver-catalyzed bioleaching of copper, molybdenum and rhenium from a chalcopyrite–molybdenite concentrate, Int. Biodeterior. Biodegrad., 104(2015), p. 194. doi: 10.1016/j.ibiod.2015.05.025
      [9]
      M.N. Chandraprabha and K.A. Natarajan, Surface chemical and flotation behaviour of chalcopyrite and pyrite in the presence of Acidithiobacillus thiooxidans, Hydrometallurgy, 83(2006), No. 1-4, p. 146. doi: 10.1016/j.hydromet.2006.03.021
      [10]
      J.Z. Sun, J.K. Wen, B.W. Chen, and B. Wu, Mechanism of Mg2+ dissolution from olivine and serpentine: Implication for bioleaching of high-magnesium nickel sulfide ore at elevated pH, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1069. doi: 10.1007/s12613-019-1823-8
      [11]
      J.T. He, Z.L. Cai, Y.M. Zhang, N.N. Xue, X.J. Wang, and Q.S. Zheng, Effects of energy source on bioleaching of vanadium-bearing shale by Acidithiobacillus ferrooxidans, Biochem. Eng. J., 151(2019), art. No. 107355. doi: 10.1016/j.bej.2019.107355
      [12]
      Y.B. Dong, H. Lin, X.F. Xu, and S.S. Zhou, Bioleaching of different copper sulfides by Acidithiobacillus ferrooxidans and its adsorption on minerals, Hydrometallurgy, 140(2013), p. 42. doi: 10.1016/j.hydromet.2013.05.009
      [13]
      S.N. Tan and M. Chen, Early stage adsorption behaviour of Acidithiobacillus ferrooxidans on minerals I: An experimental approach, Hydrometallurgy, 119-120(2012), p. 87. doi: 10.1016/j.hydromet.2012.02.001
      [14]
      Z.H. Wang, X.H. Xie, and J.S. Liu, Experimental measurements of short-term adsorption of Acidithiobacillus ferrooxidans onto chalcopyrite, Trans. Nonferrous Met. Soc. China, 22(2012), No. 2, p. 442. doi: 10.1016/S1003-6326(11)61196-5
      [15]
      J.Y. Zhu, Q. Li, W.F. Jiao, et al., Adhesion forces between cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans and chalcopyrite, Colloids Surf. B Biointerfaces, 94(2012), p. 95. doi: 10.1016/j.colsurfb.2012.01.022
      [16]
      W.L. Feng, Y.Y. Li, Z.Y. Lin, et al., The influence on biosorption potentials of metal-resistant bacteria Enterobacter sp. EG16 and Bacillus subtilis DBM by typical red soil minerals, J. Soils Sediments, 20(2020), No. 8, p. 3217. doi: 10.1007/s11368-020-02650-y
      [17]
      N.Q. Lu, T.J. Hu, Y.B. Zhai, et al., Fungal cell with artificial metal container for heavy metals biosorption: Equilibrium, kinetics study and mechanisms analysis, Environ. Res., 182(2020), art. No. 109061. doi: 10.1016/j.envres.2019.109061
      [18]
      B. Shojaei and I. Khazaee, 1-D transient microbial fuel cell simulation considering biofilm growth and temperature variation, Int. J. Therm. Sci., 162(2021), art. No. 106801. doi: 10.1016/j.ijthermalsci.2020.106801
      [19]
      Y. Lv, J. Li, H. Ye, et al., Bioleaching of electrolytic manganese residue by silicate bacteria, and optimization of parameters during the leaching process, Min. Metall. Explor., 35(2018), No. 4, p. 176. doi: 10.19150/mmp.8594
      [20]
      X. Wang, H. Lin, Y.B. Dong, and G.Y. Li, Bioleaching of vanadium from barren stone coal and its effect on the transition of vanadium speciation and mineral phase, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 253. doi: 10.1007/s12613-018-1568-9
      [21]
      Y. Lv, J. Li, H.P. Ye, et al., Bioleaching behaviors of silicon and metals in electrolytic manganese residue using silicate bacteria, J. Clean. Prod., 228(2019), p. 901. doi: 10.1016/j.jclepro.2019.04.289
      [22]
      W. Luo and X.C. Zheng, Adsorption behaviors of Rhodotorula sp. in the bioleaching process of Acidithiobacillus ferrooxidans, J. Environ. Eng., 145(2019), No. 11, art. No. 04019073. doi: 10.1061/(ASCE)EE.1943-7870.0001592
      [23]
      Z.Z. Huang, S.S. Feng, Y.J. Tong, and H.L. Yang, Enhanced “contact mechanism” for interaction of extracellular polymeric substances with low-grade copper-bearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus, J. Environ. Manage., 242(2019), p. 11. doi: 10.1016/j.jenvman.2019.04.030
      [24]
      Y.G. Wang, K. Li, X.H. Chen, and H.B. Zhou, Responses of microbial community to pH stress in bioleaching of low grade copper sulfide, Bioresour. Technol., 249(2018), p. 146. doi: 10.1016/j.biortech.2017.10.016
      [25]
      M. Farahat, T. Hirajima, K. Sasaki, and K. Doi, Adhesion of Escherichia coli onto quartz, hematite and corundum: Extended DLVO theory and flotation behavior, Colloids Surf. B, 74(2009), No. 1, p. 140. doi: 10.1016/j.colsurfb.2009.07.009
      [26]
      N. Yee, J.B. Fein, and C.J. Daughney, Experimental study of the pH, ionic strength, and reversibility behavior of bacteria–mineral adsorption, Geochim. Cosmochim. Acta, 64(2000), No. 4, p. 609. doi: 10.1016/S0016-7037(99)00342-7
      [27]
      A.R. Shashikala and A.M. Raichur, Role of interfacial phenomena in determining adsorption of Bacillus polymyxa onto hematite and quartz, Colloids Surf. B Biointerfaces, 24(2002), No. 1, p. 11. doi: 10.1016/S0927-7765(01)00217-X
      [28]
      X.D. Hao, X.D. Liu, Q. Yang, et al., Comparative study on bioleaching of two different types of low-grade copper tailings by mixed moderate thermophiles, Trans. Nonferrous Met. Soc. China, 28(2018), No. 9, p. 1847. doi: 10.1016/S1003-6326(18)64829-0
      [29]
      Y. Gurevich, M. Teremova, G. Bondarenko, and S. Kislan, Bio-chemical leaching of kaolinite–hematite–boehmite type bauxite ore, Indian J. Chem. Technol., 22(2015), No. 5, p. 248.
      [30]
      A. Monballiu, N. Cardon, M. Tri Nguyen, et al., Tolerance of chemoorganotrophic bioleaching microorganisms to heavy metal and alkaline stresses, Bioinorg. Chem. Appl., 2015(2015), art. No. 861874. doi: 10.1155/2015/861874
      [31]
      T.N. Tran, D.G. Kim, and S.O. Ko, Encapsulation of biogenic manganese oxide and Pseudomonas putida MnB1 for removing 17 α-ethinylestradiol from aquatic environments, J. Water Process Eng., 37(2020), art. No. 101423. doi: 10.1016/j.jwpe.2020.101423
      [32]
      S. Charaabi, R. Absi, A.M. Pensé-Lhéritier, M. Le Borgne, and S. Issa, Adsorption studies of benzophenone-3 onto clay minerals and organosilicates: Kinetics and modelling, Appl. Clay Sci., 202(2021), art. No. 105937. doi: 10.1016/j.clay.2020.105937
      [33]
      R.L. Yu, Z.H. Liu, Z.J. Yu, et al., Relationship among the secretion of extracellular polymeric substances, heat resistance, and bioleaching ability of Metallosphaera sedula, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1504. doi: 10.1007/s12613-019-1851-4
      [34]
      R.Y. Zhang, S. Hedrich, F. Römer, D. Goldmann, and A. Schippers, Bioleaching of cobalt from Cu/Co-rich sulfidic mine tailings from the polymetallic Rammelsberg mine, Germany, Hydrometallurgy, 197(2020), art. No. 105443. doi: 10.1016/j.hydromet.2020.105443
      [35]
      H.F. Yang, T. Li, Y.H. Chang, H. Luo, and Q.Y. Tang, Possibility of using strain F9 (Serratia marcescens) as a bio-collector for hematite flotation, Int. J. Miner. Metall. Mater., 21(2014), No. 3, p. 210. doi: 10.1007/s12613-014-0887-8
      [36]
      R.H. Lara, J.V. García-Meza, R. Cruz, D. Valdez-Pérez, and I. González, Influence of the sulfur species reactivity on biofilm conformation during pyrite colonization by Acidithiobacillus thiooxidans, Appl. Microbiol. Biotechnol., 95(2012), No. 3, p. 799. doi: 10.1007/s00253-011-3715-3
      [37]
      H. Nouri, E. Azin, A. Kamyabi, and H. Moghimi, Biosorption performance and cell surface properties of a fungal-based sorbent in azo dye removal coupled with textile wastewater, Int. J. Environ. Sci. Technol., 18(2021), No. 9, p. 2545. doi: 10.1007/s13762-020-03011-5
      [38]
      J.Y. Zhu, Q.F. Wang, S. Zhou, et al., Insights into the relation between adhesion force and chalcopyrite-bioleaching by Acidithiobacillus ferrooxidans, Colloids Surf. B, 126(2015), p. 351. doi: 10.1016/j.colsurfb.2014.11.036
      [39]
      Y.L. Huang, Y.S. Zhang, H.B. Zhao, et al., Bioleaching of chalcopyrite–bornite and chalcopyrite–pyrite mixed ores in the presence of moderately thermophilic microorganisms, Int. J. Electrochem. Sci., (2017), p. 10493. doi: 10.20964/2017.11.33
      [40]
      A. Adamou, A. Nicolaides, and C. Varotsis, Bio-hydrometallurgy dynamics of copper sulfide-minerals probed by micro-FTIR mapping and Raman microspectroscopy, Miner. Eng., 132(2019), p. 39. doi: 10.1016/j.mineng.2018.11.038
      [41]
      P.C. Hu, Y.M. Zhang, T. Liu, et al., Highly selective separation of vanadium over iron from stone coal by oxalic acid leaching, J. Ind. Eng. Chem., 45(2017), p. 241. doi: 10.1016/j.jiec.2016.09.029
      [42]
      R.L. Yu, C.W. Hou, A.J. Liu, et al., Extracellular DNA enhances the adsorption of Sulfobacillus thermosulfidooxidans strain ST on chalcopyrite surface, Hydrometallurgy, 176(2018), p. 97. doi: 10.1016/j.hydromet.2018.01.018
      [43]
      D. Fullston, D. Fornasiero, and J. Ralston, Zeta potential study of the oxidation of copper sulfide minerals, Colloids Surf. A Physicochem. Eng. Aspects, 146(1999), No. 1-3, p. 113. doi: 10.1016/S0927-7757(98)00725-0
      [44]
      W. Sand, T. Gehrke, P.G. Jozsa, and A. Schippers, (Bio)chemistry of bacterial leaching—Direct vs. indirect bioleaching, Hydrometallurgy, 59(2001), No. 2-3, p. 159. doi: 10.1016/S0304-386X(00)00180-8

    Catalog


    • /

      返回文章
      返回