Processing math: 100%

Effect of Co2+ substitution in B-sites of the perovskite system on the phase formation, microstructure, electrical and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics

Pamornnarumol Bhupaijit, Chonnarong Kaewsai, Tawat Suriwong, Supree Pinitsoontorn, Surirat Yotthuan, Naratip Vittayakorn, Theerachai Bongkarn

图(6)  /  表(2)

分享

计量
  • 文章访问数:  1011
  • HTML全文浏览量:  352
  • PDF下载量:  58
  • 被引次数: 0

目录

Cite this article as:

Pamornnarumol Bhupaijit, Chonnarong Kaewsai, Tawat Suriwong, Supree Pinitsoontorn, Surirat Yotthuan, Naratip Vittayakorn, and Theerachai Bongkarn, Effect of Co2+ substitution in B-sites of the perovskite system on the phase formation, microstructure, electrical and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp.1798-1808. https://dx.doi.org/10.1007/s12613-021-2345-8
Pamornnarumol Bhupaijit, Chonnarong Kaewsai, Tawat Suriwong, Supree Pinitsoontorn, Surirat Yotthuan, Naratip Vittayakorn, and Theerachai Bongkarn, Effect of Co2+ substitution in B-sites of the perovskite system on the phase formation, microstructure, electrical and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp.1798-1808. https://dx.doi.org/10.1007/s12613-021-2345-8
引用本文 PDF XML SpringerLink
研究论文

Co2+取代钙钛矿结构B位对Bi0.5(Na0.68K0.22Li0.10)0.5TiO3陶瓷相形成、显微组织、电学和磁学性能的影响

    通信作者:

    Theerachai Bongkarn E-mail: researchcmu@yahoo.com

通过固态燃烧技术制备Bi0.5(Na0.68K0.22Li0.10)0.5Ti1–xCoxO3 无铅钙钛矿陶瓷(BNKLT–xCo, x = 0, 0.005, 0.010, 0.015, 0.020)。因少量Co2+离子置换到 Ti 位点而导致 BNKLT 陶瓷的相组成、微观结构、电学和磁学性能发生改变。使用 X 射线衍射 (XRD) 发现在所有样品中菱面体和四方相共存。 Rietveld 结果表明,当 x 从 0 增加到 0.020 时,菱面体相比例从 39% 增加到 88%。当 x 增加时,平均晶粒尺寸增加。随着 x 的增加,产生了更多的氧空位,导致双极应变(SE)磁滞回线不对称。x = 0.010 时,介电常数 (εm) 达到5384,应变 (Smax)达到0.23%,归一化应变 ((d33)) 为 460 pm·V–1。 50 K温度下,BNKLT–0Co 陶瓷表现出抗磁行为,但所有 BNKLT–xCo 陶瓷表现出顺磁行。

 

Research Article

Effect of Co2+ substitution in B-sites of the perovskite system on the phase formation, microstructure, electrical and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics

Author Affilications
    Corresponding author:

    Theerachai Bongkarn E-mail: researchcmu@yahoo.com

  • Received: 28 April 2021; Revised: 17 August 2021; Accepted: 23 August 2021; Available online: 25 August 2021
Bi0.5(Na0.68K0.22Li0.10)0.5Ti1–xCoxO3 lead-free perovskite ceramics (BNKLT–xCo, x = 0, 0.005, 0.010, 0.015 and 0.020) were fabricated via the solid-state combustion technique. A small-amount of Co2+ ion substitution into Ti-sites led to modification of the phase formation, microstructure, electrical and magnetic properties of BNKLT ceramics. Coexisting rhombohedral and tetragonal phases were observed in all samples using the X-ray diffraction (XRD) technique. The Rietveld refinement revealed that the rhombohedral phase increased from 39% to 88% when x increased from 0 to 0.020. The average grain size increased when x increased. With increasing x, more oxygen vacancies were generated, leading to asymmetry in the bipolar strain (SE) hysteresis loops. For the composition of x = 0.010, a high dielectric constant (εm) of 5384 and a large strain (Smax) of 0.23% with the normalized strain (d33) of 460 pm·V–1 were achieved. The BNKLT–0Co ceramic showed diamagnetic behavior but all of the BNKLT–xCo ceramics exhibited paramagnetic behavior, measured at 50 K.

 

  • [1]

    L.X. He, M. Gao, C.E. Li, W.M. Zhu, and H.X. Yan, Effects of Cr2O3 addition on the piezoelectric properties and microstructure of PbZrxTiy(Mg1/3Nb2/3)1−xyO3 ceramics, J. Eur. Ceram. Soc., 21(2001), No. 6, p. 703. DOI: 10.1016/S0955-2219(00)00256-9

    [2]

    J.J. Choi, J.H. Lee, B.D. Hahn, W.H. Yoon, and D.S. Park, Co-firing of PZN–PZT/Ag multilayer actuator prepared by tape-casting method, Mater. Res. Bull., 43(2008), No. 2, p. 483. DOI: 10.1016/j.materresbull.2007.02.033

    [3]

    T. Yamamoto, Ferroelectric properties of the PbZrO3–PbTiO3 system, Jpn. J. Appl. Phys., 35(1996), No. 9S, p. 5104.

    [4]

    J.M. Li, F.F. Wang, C.M. Leung, S.W. Or, Y.X. Tang, X.M. Chen, T. Wang, X.M. Qin, and W.Z. Shi, Large strain response in acceptor- and donor-doped Bi0.5Na0.5TiO3-based lead-free ceramics, J. Mater. Sci., 46(2011), No. 17, p. 5702. DOI: 10.1007/s10853-011-5523-7

    [5]

    A. Maqbool, A. Hussain, R.A. Malik, A. Zaman, T.K. Song, W.J. Kim, and M.H. Kim, Dielectric and ferroelectric properties of Nb doped BNT-based relaxor ferroelectrics, Korean. J. Mater. Res., 25(2015), No. 7, p. 317. DOI: 10.3740/MRSK.2015.25.7.317

    [6]

    G.J. Lee, B.H. Kim, S.A. Yang, J.J. Park, S.D. Bu, and M.K. Lee, Piezoelectric and ferroelectric properties of (Bi,Na)TiO3–(Bi,Li)TiO3–(Bi,K)TiO3 ceramics for accelerometer application, J. Am. Ceram. Soc., 100(2016), No. 2, p. 678.

    [7]

    J.H. Cho, Y.H. Jeong, J.H. Nam, J.S. Yun, and Y.J. Park, Phase transition and piezoelectric properties of lead-free (Bi1/2Na1/2)TiO3–BaTiO3 ceramics, Ceram. Int., 40(2014), No. 6, p. 8419. DOI: 10.1016/j.ceramint.2014.01.051

    [8]

    Y.J. Dai, X.W. Zhang, and K.P. Chen, An approach to improve the piezoelectric property of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3–BaTiO3 lead-free ceramics, Int. J. Appl. Ceram. Technol., 8(2011), No. 2, p. 423. DOI: 10.1111/j.1744-7402.2009.02436.x

    [9]

    J. Shieh, K.C. Wu, and C.S. Chen, Switching characteristics of MPB compositions of (Bi0.5Na0.5)TiO3–BaTiO3–(Bi0.5K0.5)TiO3 lead-free ferroelectric ceramics, Acta Mater., 55(2007), No. 9, p. 3081. DOI: 10.1016/j.actamat.2007.01.012

    [10]

    R. Sumang, D.P. Cann, N. Kumar, and T. Bongkarn, The influence of firing temperatures on the crystal structure, microstructure and dielectric properties of 0.68Bi0.5Na0.5TiO3–0.22Bi0.5K0.5TiO3–0.10Bi0.5Li0.5TiO3Ceramics prepared via the combustion technique, Ferroelectrics, 490(2016), No. 1, p. 51. DOI: 10.1080/00150193.2015.1071644

    [11]

    A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems, Jpn. J. Appl. Phys., 38(1999), No. Part1, p. 5564.

    [12]

    D. Maurya, Y. Zhou, Y.K. Yan, and S. Priya, Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics with giant piezoelectric response, J. Mater. Chem. C, 1(2013), No. 11, art. No. 2102. DOI: 10.1039/c3tc00619k

    [13]

    K.T.P. Seifert, W. Jo, and J. Rödel, Temperature-insensitive large strain of (Bi1/2Na1/2)TiO3–(Bi1/2k1/2)TiO3–(K0.5Na0.5)NbO3 lead-free piezoceramics, J. Am. Ceram. Soc., 93(2010), No. 5, p. 1392.

    [14]

    P. Bhupaijit, P. Kidkhunthod, S.K. Gupta, N. Nuntawong, S. Prasertpalichat, S. Pinitsoontorn, M. Horprathum, and T. Bongkarn, Phase evolution, microstructure, electrical, and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics with Fe3+ substitution, Phys. Status Solidi A, 217(2020), No. 12, art. No. 1900983. DOI: 10.1002/pssa.201900983

    [15]

    K. Thangavelu, R. Ramadurai, and S. Asthana, Evidence for the suppression of intermediate anti-ferroelectric ordering and observation of hardening mechanism in Na1/2Bi1/2TiO3 ceramics through cobalt substitution, AIP Adv., 4(2014), No. 1, art. No. 017111. DOI: 10.1063/1.4862169

    [16]

    S. Buntham, P. Boonsong, P. Jaiban, N. Keawprak, and A. Watcharapasorn, Effects of cobalt dopant on microstructure and electrical properties of Bi0.5Na0.5TiO3 ceramics, Chiang Mai J. Sci., 45(2018), No. 6, p. 2481.

    [17]

    B. Parija, T. Badapanda, P. Sahoo, M. Kar, P. Kumar, and S. Panigrahi, Structural and electromechanical study of Bi0.5Na0.5TiO3–BaTiO3 solid-solutions, Process. Appl. Ceram., 7(2013), No. 2, p. 73. DOI: 10.2298/PAC1302073P

    [18]

    R.Z. Zuo, Z.K. Xu, and L.T. Li, Dielectric and piezoelectric properties of Fe2O3-doped (Na0.5K0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3 lead-free ceramics, J. Phys. Chem. Solids, 69(2008), No. 7, p. 1728. DOI: 10.1016/j.jpcs.2008.01.003

    [19]

    P. Kumar, M. Pattanaik, and Sonia, Synthesis and characterizations of KNN ferroelectric ceramics near 50/50 MPB, Ceram. Int., 39(2013), No. 1, p. 65. DOI: 10.1016/j.ceramint.2012.05.093

    [20]

    A. Verma, A.K. Yadav, N. Khatun, S. Kumar, R. Jangir, V. Srihari, V.R. Reddy, S.W. Liu, S. Biring, and S. Sen, Structural, dielectric and ferroelectric studies of thermally stable and efficient energy storage ceramic materials: (Na0.5–xKxBi0.5–xLax)TiO3, Ceram. Int., 44(2018), No. 16, p. 20178. DOI: 10.1016/j.ceramint.2018.07.312

    [21]

    X.M. Chen, H.Y. Ma, W.Y. Pan, M. Pang, P. Liu, and J.P. Zhou, Microstructure, dielectric and ferroelectric properties of (NaxBi0.5)0.94Ba0.06TiO3 lead-free ferroelectric ceramics: Effect of Na nonstoichiometry, Mater. Chem. Phys., 132(2012), No. 2-3, p. 368. DOI: 10.1016/j.matchemphys.2011.11.039

    [22]

    A.E.R. Mahmoud, M. Ezzeldien, and S.K.S. Parashar, Enhancement of switching/un-switching leakage current and ferroelectric properties appraised by PUND method of (Ba1–xCax)TiO3 lead free piezoelectric near MPB, Solid State Sci., 93(2019), p. 44. DOI: 10.1016/j.solidstatesciences.2019.04.011

    [23]

    P.Y. Chen, C.S. Chen, C.S. Tu, P.H. Chen, and J. Anthoniappen, Effects of texture on microstructure, Raman vibration, and ferroelectric properties in 92.5%(Bi0.5Na0.5)TiO3–7.5%BaTiO3 ceramics, J. Eur. Ceram. Soc., 36(2016), No. 7, p. 1613. DOI: 10.1016/j.jeurceramsoc.2016.01.038

    [24]

    U. Obilor, C. Pascual-Gonzalez, S. Murakami, I.M. Reaney, and A. Feteira, Study of the temperature dependence of the giant electric field-induced strain in Nb-doped BNT–BT–BKT piezoceramics, Mater. Res. Bull., 97(2018), p. 385. DOI: 10.1016/j.materresbull.2017.09.032

    [25]

    Q.H. Zhang, X.Y. Zhao, R.B. Sun, and H.S. Luo, Crystal growth and electric properties of lead-free NBT–BT at compositions near the morphotropic phase boundary, Phys. Status Solidi A, 208(2011), No. 5, p. 1012. DOI: 10.1002/pssa.201000052

    [26]

    I.K. Hong, H.S. Han, C.H. Yoon, H.N. Ji, W.P. Tai, and J.S. Lee, Strain enhancement in lead-free Bi0.5(Na0.78K0.22)0.5TiO3 ceramics by CaZrO3 substitution, J. Intell. Mater. Syst. Struct., 24(2013), No. 11, p. 1343. DOI: 10.1177/1045389X12447986

    [27]

    K.N. Pham, A. Hussain, C.W. Ahn, W.K. Ill, S.J. Jeong, and J.S. Lee, Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics, Mater. Lett., 64(2010), No. 20, p. 2219. DOI: 10.1016/j.matlet.2010.07.048

    [28]

    D.K. Kushvaha, S.K. Rout, and B. Tiwari, Structural, piezoelectric and high density energy storage properties of lead-free BNKT–BCZT solid solution, J. Alloys Compd., 782(2019), p. 270. DOI: 10.1016/j.jallcom.2018.12.196

Relative Articles

Ji-wei Lu, Zhi-tao Yuan, Xiao-fei Guo, Zhong-yun Tong, Li-xia Li. Magnetic separation of pentlandite from serpentine by selective magnetic coating [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-019-1704-1

View details

S. E. Mousavi Ghahfarokhi, S. Hosseini, M. Zargar Shoushtari. Fabrication of SrFe12-xNixO19 nanoparticles and investigation on their structural, magnetic and dielectric properties [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-015-1145-4

View details

M. Nete, F. Koko, T. Theron, W. Purcell, J. T. Nel. Primary beneficiation of tantalite using magnetic separation and acid leaching [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-014-1022-6

View details

Ming-xiu Xu, Zhang-hua Chen, Min-qiang Xu. Micro-mechanism of metal magnetic memory signal variation during fatigue [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-014-0903-z

View details

Int. J. Miner. Metall. Mater., 2012, 19(8): 669-674.

PDF View details

S. O. Bada, A. S. Afolabi, M. J. Makhula. Effect of reverse flotation on magnetic separation concentrates [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-012-0611-5

View details

Int. J. Miner. Metall. Mater., 2009, 16(3): 314-316.

PDF View details

Feng-Qi Zhao, O. Tegus, B. Fuquan, E. Brück. Magnetic properties of Fe3(1-x)Cr3xC alloys [J]. 矿物冶金与材料学报(英文版). DOI: 10.1016/S1674-4799(09)60056-X

View details

Int. J. Miner. Metall. Mater., 2008, 15(5): 618-621.

PDF View details

Haicheng Wang, Zhongmei Du, Lijin Wang, Guanghua Yu, Fengwu Zhu. Preparation and magnetic properties of Co-P thin films [J]. 矿物冶金与材料学报(英文版). DOI: 10.1016/S1005-8850(08)60115-2

View details

Int. J. Miner. Metall. Mater., 2004, 11(4): 319-323.

PDF View details

Pol Hwang, Baohe Li, Tao Yang, Zhonghai Zhai, Fengwu Zhu. Perpendicular magnetic anisotropy of Co85Cr50/Pt multilayers [J]. 矿物冶金与材料学报(英文版).

View details

A. Okada, M Chimura, K Hamada, M Arita, I. Ishida. Observation of Magnetic Domain Structures of Magnetic Thin Films by the Lorentz Electron Microscopy [J]. 矿物冶金与材料学报(英文版).

View details

/

返回文章
返回