留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 9
Sep.  2022

图(6)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  792
  • HTML全文浏览量:  286
  • PDF下载量:  53
  • 被引次数: 0
Pamornnarumol Bhupaijit, Chonnarong Kaewsai, Tawat Suriwong, Supree Pinitsoontorn, Surirat Yotthuan, Naratip Vittayakorn, and Theerachai Bongkarn, Effect of Co2+ substitution in B-sites of the perovskite system on the phase formation, microstructure, electrical and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1798-1808. https://doi.org/10.1007/s12613-021-2345-8
Cite this article as:
Pamornnarumol Bhupaijit, Chonnarong Kaewsai, Tawat Suriwong, Supree Pinitsoontorn, Surirat Yotthuan, Naratip Vittayakorn, and Theerachai Bongkarn, Effect of Co2+ substitution in B-sites of the perovskite system on the phase formation, microstructure, electrical and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1798-1808. https://doi.org/10.1007/s12613-021-2345-8
引用本文 PDF XML SpringerLink
研究论文

Co2+取代钙钛矿结构B位对Bi0.5(Na0.68K0.22Li0.10)0.5TiO3陶瓷相形成、显微组织、电学和磁学性能的影响

  • 通讯作者:

    Theerachai Bongkarn    E-mail: researchcmu@yahoo.com

  • 通过固态燃烧技术制备Bi0.5(Na0.68K0.22Li0.10)0.5Ti1–xCoxO3 无铅钙钛矿陶瓷(BNKLT–xCo, x = 0, 0.005, 0.010, 0.015, 0.020)。因少量Co2+离子置换到 Ti 位点而导致 BNKLT 陶瓷的相组成、微观结构、电学和磁学性能发生改变。使用 X 射线衍射 (XRD) 发现在所有样品中菱面体和四方相共存。 Rietveld 结果表明,当 x 从 0 增加到 0.020 时,菱面体相比例从 39% 增加到 88%。当 x 增加时,平均晶粒尺寸增加。随着 x 的增加,产生了更多的氧空位,导致双极应变(SE)磁滞回线不对称。x = 0.010 时,介电常数 (εm) 达到5384,应变 (Smax)达到0.23%,归一化应变 ($\left({d}_{33}^{*}\right) $) 为 460 pm·V–1。 50 K温度下,BNKLT–0Co 陶瓷表现出抗磁行为,但所有 BNKLT–xCo 陶瓷表现出顺磁行。
  • Research Article

    Effect of Co2+ substitution in B-sites of the perovskite system on the phase formation, microstructure, electrical and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics

    + Author Affiliations
    • Bi0.5(Na0.68K0.22Li0.10)0.5Ti1–xCoxO3 lead-free perovskite ceramics (BNKLT–xCo, x = 0, 0.005, 0.010, 0.015 and 0.020) were fabricated via the solid-state combustion technique. A small-amount of Co2+ ion substitution into Ti-sites led to modification of the phase formation, microstructure, electrical and magnetic properties of BNKLT ceramics. Coexisting rhombohedral and tetragonal phases were observed in all samples using the X-ray diffraction (XRD) technique. The Rietveld refinement revealed that the rhombohedral phase increased from 39% to 88% when x increased from 0 to 0.020. The average grain size increased when x increased. With increasing x, more oxygen vacancies were generated, leading to asymmetry in the bipolar strain (SE) hysteresis loops. For the composition of x = 0.010, a high dielectric constant (εm) of 5384 and a large strain (Smax) of 0.23% with the normalized strain $ \left({d}_{33}^{*}\right) $ of 460 pm·V–1 were achieved. The BNKLT–0Co ceramic showed diamagnetic behavior but all of the BNKLT–xCo ceramics exhibited paramagnetic behavior, measured at 50 K.
    • loading
    • [1]
      L.X. He, M. Gao, C.E. Li, W.M. Zhu, and H.X. Yan, Effects of Cr2O3 addition on the piezoelectric properties and microstructure of PbZrxTiy(Mg1/3Nb2/3)1−xyO3 ceramics, J. Eur. Ceram. Soc., 21(2001), No. 6, p. 703. doi: 10.1016/S0955-2219(00)00256-9
      [2]
      J.J. Choi, J.H. Lee, B.D. Hahn, W.H. Yoon, and D.S. Park, Co-firing of PZN–PZT/Ag multilayer actuator prepared by tape-casting method, Mater. Res. Bull., 43(2008), No. 2, p. 483. doi: 10.1016/j.materresbull.2007.02.033
      [3]
      T. Yamamoto, Ferroelectric properties of the PbZrO3–PbTiO3 system, Jpn. J. Appl. Phys., 35(1996), No. 9S, p. 5104.
      [4]
      J.M. Li, F.F. Wang, C.M. Leung, S.W. Or, Y.X. Tang, X.M. Chen, T. Wang, X.M. Qin, and W.Z. Shi, Large strain response in acceptor- and donor-doped Bi0.5Na0.5TiO3-based lead-free ceramics, J. Mater. Sci., 46(2011), No. 17, p. 5702. doi: 10.1007/s10853-011-5523-7
      [5]
      A. Maqbool, A. Hussain, R.A. Malik, A. Zaman, T.K. Song, W.J. Kim, and M.H. Kim, Dielectric and ferroelectric properties of Nb doped BNT-based relaxor ferroelectrics, Korean. J. Mater. Res., 25(2015), No. 7, p. 317. doi: 10.3740/MRSK.2015.25.7.317
      [6]
      G.J. Lee, B.H. Kim, S.A. Yang, J.J. Park, S.D. Bu, and M.K. Lee, Piezoelectric and ferroelectric properties of (Bi,Na)TiO3–(Bi,Li)TiO3–(Bi,K)TiO3 ceramics for accelerometer application, J. Am. Ceram. Soc., 100(2016), No. 2, p. 678.
      [7]
      J.H. Cho, Y.H. Jeong, J.H. Nam, J.S. Yun, and Y.J. Park, Phase transition and piezoelectric properties of lead-free (Bi1/2Na1/2)TiO3–BaTiO3 ceramics, Ceram. Int., 40(2014), No. 6, p. 8419. doi: 10.1016/j.ceramint.2014.01.051
      [8]
      Y.J. Dai, X.W. Zhang, and K.P. Chen, An approach to improve the piezoelectric property of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3–BaTiO3 lead-free ceramics, Int. J. Appl. Ceram. Technol., 8(2011), No. 2, p. 423. doi: 10.1111/j.1744-7402.2009.02436.x
      [9]
      J. Shieh, K.C. Wu, and C.S. Chen, Switching characteristics of MPB compositions of (Bi0.5Na0.5)TiO3–BaTiO3–(Bi0.5K0.5)TiO3 lead-free ferroelectric ceramics, Acta Mater., 55(2007), No. 9, p. 3081. doi: 10.1016/j.actamat.2007.01.012
      [10]
      R. Sumang, D.P. Cann, N. Kumar, and T. Bongkarn, The influence of firing temperatures on the crystal structure, microstructure and dielectric properties of 0.68Bi0.5Na0.5TiO3–0.22Bi0.5K0.5TiO3–0.10Bi0.5Li0.5TiO3Ceramics prepared via the combustion technique, Ferroelectrics, 490(2016), No. 1, p. 51. doi: 10.1080/00150193.2015.1071644
      [11]
      A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems, Jpn. J. Appl. Phys., 38(1999), No. Part1, p. 5564.
      [12]
      D. Maurya, Y. Zhou, Y.K. Yan, and S. Priya, Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics with giant piezoelectric response, J. Mater. Chem. C, 1(2013), No. 11, art. No. 2102. doi: 10.1039/c3tc00619k
      [13]
      K.T.P. Seifert, W. Jo, and J. Rödel, Temperature-insensitive large strain of (Bi1/2Na1/2)TiO3–(Bi1/2k1/2)TiO3–(K0.5Na0.5)NbO3 lead-free piezoceramics, J. Am. Ceram. Soc., 93(2010), No. 5, p. 1392.
      [14]
      P. Bhupaijit, P. Kidkhunthod, S.K. Gupta, N. Nuntawong, S. Prasertpalichat, S. Pinitsoontorn, M. Horprathum, and T. Bongkarn, Phase evolution, microstructure, electrical, and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics with Fe3+ substitution, Phys. Status Solidi A, 217(2020), No. 12, art. No. 1900983. doi: 10.1002/pssa.201900983
      [15]
      K. Thangavelu, R. Ramadurai, and S. Asthana, Evidence for the suppression of intermediate anti-ferroelectric ordering and observation of hardening mechanism in Na1/2Bi1/2TiO3 ceramics through cobalt substitution, AIP Adv., 4(2014), No. 1, art. No. 017111. doi: 10.1063/1.4862169
      [16]
      S. Buntham, P. Boonsong, P. Jaiban, N. Keawprak, and A. Watcharapasorn, Effects of cobalt dopant on microstructure and electrical properties of Bi0.5Na0.5TiO3 ceramics, Chiang Mai J. Sci., 45(2018), No. 6, p. 2481.
      [17]
      B. Parija, T. Badapanda, P. Sahoo, M. Kar, P. Kumar, and S. Panigrahi, Structural and electromechanical study of Bi0.5Na0.5TiO3–BaTiO3 solid-solutions, Process. Appl. Ceram., 7(2013), No. 2, p. 73. doi: 10.2298/PAC1302073P
      [18]
      R.Z. Zuo, Z.K. Xu, and L.T. Li, Dielectric and piezoelectric properties of Fe2O3-doped (Na0.5K0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3 lead-free ceramics, J. Phys. Chem. Solids, 69(2008), No. 7, p. 1728. doi: 10.1016/j.jpcs.2008.01.003
      [19]
      P. Kumar, M. Pattanaik, and Sonia, Synthesis and characterizations of KNN ferroelectric ceramics near 50/50 MPB, Ceram. Int., 39(2013), No. 1, p. 65. doi: 10.1016/j.ceramint.2012.05.093
      [20]
      A. Verma, A.K. Yadav, N. Khatun, S. Kumar, R. Jangir, V. Srihari, V.R. Reddy, S.W. Liu, S. Biring, and S. Sen, Structural, dielectric and ferroelectric studies of thermally stable and efficient energy storage ceramic materials: (Na0.5–xKxBi0.5–xLax)TiO3, Ceram. Int., 44(2018), No. 16, p. 20178. doi: 10.1016/j.ceramint.2018.07.312
      [21]
      X.M. Chen, H.Y. Ma, W.Y. Pan, M. Pang, P. Liu, and J.P. Zhou, Microstructure, dielectric and ferroelectric properties of (NaxBi0.5)0.94Ba0.06TiO3 lead-free ferroelectric ceramics: Effect of Na nonstoichiometry, Mater. Chem. Phys., 132(2012), No. 2-3, p. 368. doi: 10.1016/j.matchemphys.2011.11.039
      [22]
      A.E.R. Mahmoud, M. Ezzeldien, and S.K.S. Parashar, Enhancement of switching/un-switching leakage current and ferroelectric properties appraised by PUND method of (Ba1–xCax)TiO3 lead free piezoelectric near MPB, Solid State Sci., 93(2019), p. 44. doi: 10.1016/j.solidstatesciences.2019.04.011
      [23]
      P.Y. Chen, C.S. Chen, C.S. Tu, P.H. Chen, and J. Anthoniappen, Effects of texture on microstructure, Raman vibration, and ferroelectric properties in 92.5%(Bi0.5Na0.5)TiO3–7.5%BaTiO3 ceramics, J. Eur. Ceram. Soc., 36(2016), No. 7, p. 1613. doi: 10.1016/j.jeurceramsoc.2016.01.038
      [24]
      U. Obilor, C. Pascual-Gonzalez, S. Murakami, I.M. Reaney, and A. Feteira, Study of the temperature dependence of the giant electric field-induced strain in Nb-doped BNT–BT–BKT piezoceramics, Mater. Res. Bull., 97(2018), p. 385. doi: 10.1016/j.materresbull.2017.09.032
      [25]
      Q.H. Zhang, X.Y. Zhao, R.B. Sun, and H.S. Luo, Crystal growth and electric properties of lead-free NBT–BT at compositions near the morphotropic phase boundary, Phys. Status Solidi A, 208(2011), No. 5, p. 1012. doi: 10.1002/pssa.201000052
      [26]
      I.K. Hong, H.S. Han, C.H. Yoon, H.N. Ji, W.P. Tai, and J.S. Lee, Strain enhancement in lead-free Bi0.5(Na0.78K0.22)0.5TiO3 ceramics by CaZrO3 substitution, J. Intell. Mater. Syst. Struct., 24(2013), No. 11, p. 1343. doi: 10.1177/1045389X12447986
      [27]
      K.N. Pham, A. Hussain, C.W. Ahn, W.K. Ill, S.J. Jeong, and J.S. Lee, Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics, Mater. Lett., 64(2010), No. 20, p. 2219. doi: 10.1016/j.matlet.2010.07.048
      [28]
      D.K. Kushvaha, S.K. Rout, and B. Tiwari, Structural, piezoelectric and high density energy storage properties of lead-free BNKT–BCZT solid solution, J. Alloys Compd., 782(2019), p. 270. doi: 10.1016/j.jallcom.2018.12.196

    Catalog


    • /

      返回文章
      返回