Cite this article as: |
Yue Zhao, Bei Wang, Minjie Shi, Shibo An, Liping Zhao, and Chao Yan, Mg-intercalation engineering of MnO2 electrode for high-performance aqueous magnesium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1954-1962. https://doi.org/10.1007/s12613-021-2346-7 |
施敏杰 E-mail: shiminjie@just.edu.cn
晏超 E-mail: chaoyan@just.edu.cn
[1] |
G.J. Liang, F.N. Mo, X.L. Ji, and C.Y. Zhi, Non-metallic charge carriers for aqueous batteries, Nat. Rev. Mater., 6(2021), No. 2, p. 109. doi: 10.1038/s41578-020-00241-4
|
[2] |
M. Ren, C.Y. Zhang, Y.L. Wang, and J.J. Cai, Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1482. doi: 10.1007/s12613-018-1703-7
|
[3] |
T. Yang, H.J. Liu, F. Bai, E.H. Wang, J.H. Chen, K.C. Chou, and X.M. Hou, Supercapacitor electrode based on few-layer h-BNNSs/rGO composite for wide-temperature-range operation with robust stable cycling performance, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 220. doi: 10.1007/s12613-019-1910-x
|
[4] |
C.P. Han, J.X. Zhu, C.Y. Zhi, and H.F. Li, The rise of aqueous rechargeable batteries with organic electrode materials, J. Mater. Chem. A, 8(2020), No. 31, p. 15479. doi: 10.1039/D0TA03947K
|
[5] |
J. Shin and J.W. Choi, Opportunities and reality of aqueous rechargeable batteries, Adv. Energy Mater., 10(2020), No. 28, art. No. 2001386. doi: 10.1002/aenm.202001386
|
[6] |
G. Liu, Q.G. Chi, Y.Q. Zhang, Q.G. Chen, C.H. Zhang, K. Zhu, and D.X. Cao, Superior high rate capability of MgMn2O4/rGO nanocomposites as cathode materials for aqueous rechargeable magnesium ion batteries, Chem. Commun., 54(2018), No. 68, p. 9474. doi: 10.1039/C8CC05366A
|
[7] |
H.Y. Zhang, K. Ye, S.X. Shao, X. Wang, K. Cheng, X. Xiao, G.L. Wang, and D.X. Cao, Octahedral magnesium manganese oxide molecular sieves as the cathode material of aqueous rechargeable magnesium-ion battery, Electrochim. Acta, 229(2017), p. 371. doi: 10.1016/j.electacta.2017.01.110
|
[8] |
Y.Q. Zhang, G. Liu, C.H. Zhang, Q.G. Chi, T.D. Zhang, Y. Feng, K. Zhu, Y. Zhang, Q.G. Chen, and D.X. Cao, Low-cost MgFexMn2−xO4 cathode materials for high-performance aqueous rechargeable magnesium-ion batteries, Chem. Eng. J., 392(2020), art. No. 123652. doi: 10.1016/j.cej.2019.123652
|
[9] |
F. Wang, X.L. Fan, T. Gao, W. Sun, Z.H. Ma, C.Y. Yang, F.D. Han, K. Xu, and C.S. Wang, High-voltage aqueous magnesium ion batteries, ACS Cent. Sci., 3(2017), No. 10, p. 1121. doi: 10.1021/acscentsci.7b00361
|
[10] |
Y.C. Tang, X.J. Li, H.M. Lv, W.L. Wang, Q. Yang, C.Y. Zhi, and H.F. Li, High-energy aqueous magnesium hybrid full batteries enabled by carrier-hosting potential compensation, Angew. Chem. Int. Ed., 60(2021), No. 10, p. 5443. doi: 10.1002/anie.202013315
|
[11] |
Y.L. Liang, Y. Jing, S. Gheytani, K.Y. Lee, P. Liu, A. Facchetti, and Y. Yao, Universal quinone electrodes for long cycle life aqueous rechargeable batteries, Nat. Mater., 16(2017), No. 8, p. 841. doi: 10.1038/nmat4919
|
[12] |
X. Lei, Y.P. Zheng, F. Zhang, Y. Wang, and Y.B. Tang, Highly stable magnesium-ion-based dual-ion batteries based on insoluble small-molecule organic anode material, Energy Storage Mater., 30(2020), p. 34. doi: 10.1016/j.ensm.2020.04.025
|
[13] |
L. Chen, J.L. Bao, X. Dong, D.G. Truhlar, Y. Wang, C. Wang, and Y. Xia, Aqueous Mg-ion battery based on polyimide anode and Prussian blue cathode, ACS Energy Lett., 2(2017), No. 5, p. 1115. doi: 10.1021/acsenergylett.7b00040
|
[14] |
J.S. Kim, W.S. Chang, R.H. Kim, D.Y. Kim, D.W. Han, K.H. Lee, S.S. Lee, and S.G. Doo, High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries, J. Power Sources, 273(2015), p. 210. doi: 10.1016/j.jpowsour.2014.07.162
|
[15] |
H.T. Zhu, Y.F. An, M.J. Shi, Z.Q. Li, N.T. Chen, C. Yang, and P. Xiao, Porous N-doped carbon/MnO2 nanoneedles for high performance ionic liquid-based supercapacitors, Mater. Lett., 296(2021), art. No. 129837. doi: 10.1016/j.matlet.2021.129837
|
[16] |
K.W. Nam, S. Kim, S. Lee, M. Salama, I. Shterenberg, Y. Gofer, J.S. Kim, E. Yang, C.S. Park, J.S. Kim, S.S. Lee, W.S. Chang, S.G. Doo, Y.N. Jo, Y. Jung, D. Aurbach, and J.W. Choi, The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries, Nano Lett., 15(2015), No. 6, p. 4071. doi: 10.1021/acs.nanolett.5b01109
|
[17] |
H.Y. Zhang, D.X. Cao, and X. Bai, High rate performance of aqueous magnesium-ion batteries based on the δ-MnO2@carbon molecular sieves composite as the cathode and nanowire VO2 as the anode, J. Power Sources, 444(2019), art. No. 227299. doi: 10.1016/j.jpowsour.2019.227299
|
[18] |
Z.Z. Liu, W.H. Zhou, J. He, H. Chen, R.X. Zhang, Q. Wang, Y. Wang, Y.G. Yan, and Y.G. Chen, Binder-free MnO2 as a high rate capability cathode for aqueous magnesium ion battery, J. Alloys Compd., 869(2021), art. No. 159279. doi: 10.1016/j.jallcom.2021.159279
|
[19] |
C.L. Wu, G.Y. Zhao, X.Y. Bao, X. Chen, and K.N. Sun, Hierarchically porous delta-manganese dioxide films prepared by an electrochemically assistant method for Mg ion battery cathodes with high rate performance, J. Alloys Compd., 770(2019), p. 914. doi: 10.1016/j.jallcom.2018.08.123
|
[20] |
Q.H. Zhao, A.Y. Song, S.X. Ding, R.Z. Qin, Y.H. Cui, S.N. Li, and F. Pan, Preintercalation strategy in manganese oxides for electrochemical energy storage: Review and prospects, Adv. Mater., 32(2020), No. 50, art. No. 2002450. doi: 10.1002/adma.202002450
|
[21] |
J.W. Wang, X.L. Sun, H.Y. Zhao, L.L. Xu, J.L. Xia, M. Luo, Y.D. Yang, and Y.P. Du, Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by rare earth doping, J. Phys. Chem. C, 123(2019), No. 37, p. 22735. doi: 10.1021/acs.jpcc.9b05535
|
[22] |
M. Asif, M. Rashad, Z. Ali, H.L. Qiu, W. Li, L.J. Pan, and Y.L. Hou, Ni-doped MnO2/CNT nanoarchitectures as a cathode material for ultra-long life magnesium/lithium hybrid ion batteries, Mater. Today Energy, 10(2018), p. 108. doi: 10.1016/j.mtener.2018.08.010
|
[23] |
F. Kataoka, T. Ishida, K. Nagita, V. Kumbhar, K. Yamabuki, and M. Nakayama, Cobalt-doped layered MnO2 thin film electrochemically grown on nitrogen-doped carbon cloth for aqueous zinc-ion batteries, ACS Appl. Energy Mater., 3(2020), No. 5, p. 4720. doi: 10.1021/acsaem.0c00357
|
[24] |
C. Wei, X.Y. Fu, L.L. Zhang, J. Liu, P.P. Sun, L. Gao, K.J. Chang, and X.L. Yang, Structural regulated nickel hexacyanoferrate with superior sodium storage performance by K-doping, Chem. Eng. J., 421(2021), art. No. 127760. doi: 10.1016/j.cej.2020.127760
|
[25] |
M.J. Young, A.M. Holder, S.M. George, and C.B. Musgrave, Charge storage in cation incorporated α-MnO2, Chem. Mater., 27(2015), No. 4, p. 1172. doi: 10.1021/cm503544e
|
[26] |
Z.M. Hu, X. Xiao, C. Chen, T.Q. Li, L. Huang, C.F. Zhang, J. Su, L. Miao, J.J. Jiang, Y.R. Zhang, and J. Zhou, Al-doped α-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability, Nano Energy, 11(2015), p. 226. doi: 10.1016/j.nanoen.2014.10.015
|
[27] |
H.Z. Zhang, Q.Y. Liu, J. Wang, K.F. Chen, D.F. Xue, J. Liu, and X.H. Lu, Boosting the Zn-ion storage capability of birnessite manganese oxide nanoflorets by La3+ intercalation, J. Mater. Chem. A, 7(2019), No. 38, p. 22079. doi: 10.1039/C9TA08418E
|
[28] |
L. Wang, Q.Y. Wu, A. Abraham, P.J. West, L.M. Housel, G. Singh, N. Sadique, C.D. Quilty, D.R. Wu, E.S. Takeuchi, A.C. Marschilok, and K.J. Takeuchi, Silver-containing α-MnO2 nanorods: Electrochemistry in rechargeable aqueous Zn–MnO2 batteries, J. Electrochem. Soc., 166(2019), No. 15, p. A3575. doi: 10.1149/2.0101915jes
|
[29] |
F.W. Fenta, B.W. Olbasa, M.C. Tsai, M.A. Weret, T.A. Zegeye, C.J. Huang, W.H. Huang, T.S. Zeleke, N.A. Sahalie, C.W. Pao, S.H. Wu, W.N. Su, H.J. Dai, and B.J. Hwang, Electrochemical transformation reaction of Cu–MnO in aqueous rechargeable zinc-ion batteries for high performance and long cycle life, J. Mater. Chem. A, 8(2020), No. 34, p. 17595. doi: 10.1039/D0TA04175K
|
[30] |
A.M. Hashem, H.M. Abuzeid, N. Narayanan, H. Ehrenberg, and C.M. Julien, Synthesis, structure, magnetic, electrical and electrochemical properties of Al, Cu and Mg doped MnO2, Mater. Chem. Phys., 130(2011), No. 1-2, p. 33. doi: 10.1016/j.matchemphys.2011.04.074
|
[31] |
H.F. Li, H.Y. Wang, M. Yang, Y.C. Sun, Y.R. Yin, and P.Z. Guo, Mg-inserted δ-MnO2 nanosheet assembly for enhanced energy storage, Colloids Surf. A, 602(2020), art. No. 125068. doi: 10.1016/j.colsurfa.2020.125068
|
[32] |
Q. Chen, J.L. Jin, Z.K. Kou, C. Liao, Z.A. Liu, L. Zhou, J. Wang, and L.Q. Mai, Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density, Small, 16(2020), No. 14, art. No. 2000091. doi: 10.1002/smll.202000091
|
[33] |
L.L. Feng, Z.W. Xuan, H.B. Zhao, Y. Bai, J.M. Guo, C.W. Su, and X.K. Chen, MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery, Nanoscale Res. Lett., 9(2014), No. 1, art. No. 290. doi: 10.1186/1556-276X-9-290
|
[34] |
X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, and L.F. Nazar, A highly efficient polysulfide mediator for lithium–sulfur batteries, Nat. Commun., 6(2015), art. No. 5682. doi: 10.1038/ncomms6682
|
[35] |
Y. Xu, J. Wan, L. Huang, M.Y. Ou, C.Y. Fan, P. Wei, J. Peng, Y. Liu, Y.G. Qiu, X.P. Sun, C. Fang, Q. Li, J.T. Han, Y.H. Huang, J.A. Alonso, and Y.S. Zhao, Structure distortion induced monoclinic nickel hexacyanoferrate as high-performance cathode for Na-ion batteries, Adv. Energy Mater., 9(2019), No. 4, art. No. 1803158. doi: 10.1002/aenm.201803158
|
[36] |
C. Ling, J.J. Chen, and F. Mizuno, First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: The important role of ionic radius, J. Phys. Chem. C, 117(2013), No. 41, p. 21158. doi: 10.1021/jp4078689
|
[37] |
H.Y. Zhang, D.X. Cao, and X. Bai, Ni-Doped magnesium manganese oxide as a cathode and its application in aqueous magnesium-ion batteries with high rate performance, Inorg. Chem. Front., 7(2020), No. 11, p. 2168. doi: 10.1039/D0QI00067A
|
[38] |
J.F. Yin, A.B. Brady, E.S. Takeuchi, A.C. Marschilok, and K.J. Takeuchi, Magnesium-ion battery-relevant electrochemistry of MgMn2O4: Crystallite size effects and the notable role of electrolyte water content, Chem. Commun., 53(2017), No. 26, p. 3665. doi: 10.1039/C7CC00265C
|
[39] |
Z.J. Jia, J.W. Hao, L.J. Liu, Y. Wang, and T. Qi, Vertically aligned α-MnO2 nanosheets on carbon nanotubes as cathodic materials for aqueous rechargeable magnesium ion battery, Ionics, 24(2018), No. 11, p. 3483. doi: 10.1007/s11581-018-2499-1
|
[40] |
X.H. Wang, T.S. Mathis, K. Li, Z.F. Lin, L. Vlcek, T. Torita, N.C. Osti, C. Hatter, P. Urbankowski, A. Sarycheva, M. Tyagi, E. Mamontov, P. Simon, and Y. Gogotsi, Influences from solvents on charge storage in titanium carbide MXenes, Nat. Energy, 4(2019), No. 3, p. 241. doi: 10.1038/s41560-019-0339-9
|
[41] |
L. Naderi, S. Shahrokhian, and F. Soavi, Fabrication of a 2.8 V high-performance aqueous flexible fiber-shaped asymmetric micro-supercapacitor based on MnO2/PEDOT: PSS-reduced graphene oxide nanocomposite grown on carbon fiber electrode, J. Mater. Chem. A, 8(2020), No. 37, p. 19588. doi: 10.1039/D0TA06561G
|
[42] |
Z.X. Lu, W.X. Wang, J. Zhou, and Z.C. Bai, FeS2@TiO2 nanorods as high-performance anode for sodium ion battery, Chin. J. Chem. Eng., 28(2020), No. 10, p. 2699. doi: 10.1016/j.cjche.2020.07.011
|
[43] |
S. Cheng, L.F. Yang, D.C. Chen, X. Ji, Z.J. Jiang, D. Ding, and M.L. Liu, Phase evolution of an alpha MnO2-based electrode for pseudo-capacitors probed by in operando Raman spectroscopy, Nano Energy, 9(2014), p. 161. doi: 10.1016/j.nanoen.2014.07.008
|
[44] |
T. Gao, H. Fjellvåg, and P. Norby, A comparison study on Raman scattering properties of α- and β-MnO2, Anal. Chim. Acta, 648(2009), No. 2, p. 235. doi: 10.1016/j.aca.2009.06.059
|
[45] |
M.J. Shi, B. Wang, C. Chen, J.W. Lang, C. Yan, and X.B. Yan, 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries, J. Mater. Chem. A, 8(2020), No. 46, p. 24635. doi: 10.1039/D0TA09085A
|
[46] |
Q.N. Zhang, M.D. Levi, Q.Y. Dou, Y.L. Lu, Y.G. Chai, S.L. Lei, H.X. Ji, B. Liu, X.D. Bu, P.J. Ma, and X.B. Yan, The charge storage mechanisms of 2D cation-intercalated manganese oxide in different electrolytes, Adv. Energy Mater., 9(2019), No. 3, art. No. 1802707. doi: 10.1002/aenm.201802707
|
[47] |
D.C. Chen, D. Ding, X.X. Li, G.H. Waller, X.H. Xiong, M.A. El-Sayed, and M.L. Liu, Probing the charge storage mechanism of a pseudocapacitive MnO2 electrode using in operando Raman spectroscopy, Chem. Mater., 27(2015), No. 19, p. 6608. doi: 10.1021/acs.chemmater.5b03118
|
[48] |
M.J. Shi, B. Wang, Y. Shen, J.T. Jiang, W.H. Zhu, Y.J. Su, M. Narayanasamy, S. Angaiah, C. Yan, and Q. Peng, 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries, Chem. Eng. J., 399(2020), art. No. 125627. doi: 10.1016/j.cej.2020.125627
|