留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 4
Apr.  2023

图(10)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  896
  • HTML全文浏览量:  322
  • PDF下载量:  48
  • 被引次数: 0
Shengyang Zhang, Bolin Zhang, Boyu Wu, Bo Liu,  and Shengen Zhang, Effect of samarium on the N2 selectivity of SmxMn0.3−xTi catalysts during selective catalytic reduction of NOx with NH3, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 642-652. https://doi.org/10.1007/s12613-021-2348-5
Cite this article as:
Shengyang Zhang, Bolin Zhang, Boyu Wu, Bo Liu,  and Shengen Zhang, Effect of samarium on the N2 selectivity of SmxMn0.3−xTi catalysts during selective catalytic reduction of NOx with NH3, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 642-652. https://doi.org/10.1007/s12613-021-2348-5
引用本文 PDF XML SpringerLink
研究论文

钐对SmxMn0.3−xTi催化剂NH3选择性催化还原NOx过程中N2选择性的影响

文章亮点

  • (1) Sm0.15Mn0.15Ti催化剂在180‒300℃下,NO转化率达到100%,N2选择性达到87%以上。
  • (2) 掺杂Sm降低了Sm0.15Mn0.15Ti催化剂的氧化还原性能,有效提高了N2选择性。
  • (3) 掺杂Sm增加了催化剂的比表面积、表面吸附氧、酸强度和总酸量。
  • (4) Sm0.15Mn0.15Ti催化剂在100‒300°C下,NH3-SCR反应主要遵循Eley–Rideal机制。
  • 本文研究了Sm对Mn基催化剂NH3选择性催化还原NO的改善作用。采用共沉淀法制备了一系列SmxMn0.3−xTi催化剂(x = 0, 0.1, 0.15, 0.2和0.3)。活性测试表明,Sm0.15Mn0.15Ti催化剂在180‒300°C条件下,NO转化率达100%,N2选择性达87%以上。表征结果表明,Mn基催化剂中添加Sm,抑制了TiO2和Mn2O3相的结晶,提高了比表面积和酸性,其中Sm改性催化剂的比表面积从152.2增加至241.7 m2·g−1。这些作用有利于提高催化活性。X射线光电子能谱(XPS)结果表明,Sm0.15Mn0.15Ti的Sm3+/Sm和Oβ/O的相对原子比分别为76.77at%和44.11at%,添加Sm增加了表面吸附氧(Oβ),降低了Mn4+的表面浓度;程序升温还原H2(H2-TPR)结果表明,Sm0.15Mn0.15Ti催化剂还原温度提高,H2消耗量降低至0.3 mmol⋅g−1。Sm的引入降低了催化剂Mn4+表面浓度,使得该催化剂氧化还原性能降低,进一步抑制NH3氧化和非选择性催化还原反应生成N2O,从而提高了催化剂的N2选择性。原位漫反射红外傅立叶变换光谱(DRIFTs)表明,Sm0.15Mn0.15Ti催化剂的NH3-SCR反应主要遵循Eley‒Rideal机制。Sm掺杂增加了Sm0.15Mn0.15Ti催化剂的表面吸附氧(Oβ),降低了氧化还原性能,提高了Sm0.15Mn0.15Ti催化剂的NO转化率和N2选择性。
  • Research Article

    Effect of samarium on the N2 selectivity of SmxMn0.3−xTi catalysts during selective catalytic reduction of NOx with NH3

    + Author Affiliations
    • This work aims to study the improvement effect of Sm on Mn-based catalysts for selective catalytic reduction (SCR) of NO with NH3. A series of SmxMn0.3−xTi catalysts (x = 0, 0.1, 0.15, 0.2, and 0.3) were prepared by co-precipitation. Activity tests indicated that the Sm0.15Mn0.15Ti catalyst showed superior performances, with a NO conversion of 100% and N2 selectivity above 87% at 180–300°C. The characterizations showed that Sm doping suppressed the crystallization of TiO2 and Mn2O3 phases and increased the specific surface area and acidity. In particular, the surface area increased from 152.2 m2·g−1 for Mn0.3Ti to 241.7 m2·g−1 for Sm0.15Mn0.15Ti. These effects contributed to the high catalytic activity. The X-ray photoelectron spectroscopy (XPS) results indicated that the relative atomic ratios of Sm3+/Sm and Oβ/O of Sm0.15Mn0.15Ti were 76.77at% and 44.11at%, respectively. The presence of Sm contributed to an increase in surface-absorbed oxygen (Oβ) and a decrease in Mn4+ surface concentration, which improved the catalytic activity. In the results of hydrogen temperature-programmed reduction (H2-TPR), the presence of Sm induced a higher reduction temperature and lower H2 consumption (0.3 mmol·g−1) for the Sm0.15Mn0.15Ti catalyst compared to the Mn0.3Ti catalyst. The decrease in Mn4+ weakened the redox property of the catalysts and increased the N2 selectivity by suppressing N2O formation from NH3 oxidation and the nonselective catalytic reduction reaction. The in situ diffuse reflectance infrared Fourier transform spectra (DRIFTs) revealed that NH3-SCR of NO over the Sm0.15Mn0.15Ti catalyst mainly followed the Eley–Rideal mechanism. Sm doping increased surface-absorbed oxygen and weakened the redox property to improve the NO conversion and N2 selectivity of the Sm0.15Mn0.15Ti catalyst.
    • loading
    • Supplementary Information-s12613-021-2348-5.docx
    • [1]
      L. Tang, X.D. Xue, J.B. Qu, Z.F. Mi, X. Bo, X.Y. Chang, S.Y. Wang, S.B. Li, W.G. Cui, and G.X. Dong, Air pollution emissions from Chinese power plants based on the continuous emission monitoring systems network, Sci. Data, 7(2020), art. No. 325. doi: 10.1038/s41597-020-00665-1
      [2]
      X.M. Wang, X.S. Du, G.P. Yang, J.Y. Xue, Y.R. Chen, and L. Zhang, Chemisorption of NO2 on V-based SCR catalysts: a fundamental study toward the mechanism of “fast-SCR” reaction, J. Phys. Chem. C, 123(2019), No. 33, p. 20451. doi: 10.1021/acs.jpcc.9b06910
      [3]
      X.M. Wang, X.S. Du, L. Zhang, Y.R. Chen, G.P. Yang, and J.Y. Ran, Promotion of NH4HSO4 decomposition in NO/NO2 contained atmosphere at low temperature over V2O5–WO3/TiO2 catalyst for NO reduction, Appl. Catal. A, 559(2018), p. 112. doi: 10.1016/j.apcata.2018.04.025
      [4]
      Y.S. Li, X.S. Leng, S.B. Ma, T.R. Zhang, F.L. Yuan, X.Y. Niu, and Y.J. Zhu, Effects of Mo addition on the NH3-SCR of NO reaction over MoaMnTi10Ox (a = 0.2, 0.4, 0.6 and 0.8): Synergistic action between redox and acidity, Catal. Today, 339(2020), p. 254. doi: 10.1016/j.cattod.2019.03.048
      [5]
      M.J. Han, Y.L. Jiao, C.H. Zhou, Y.L. Guo, Y. Guo, G.Z. Lu, L. Wang, and W.C. Zhan, Catalytic activity of Cu‒SSZ‒13 prepared with different methods for NH3-SCR reaction, Rare Met., 38(2019), No. 3, p. 210. doi: 10.1007/s12598-018-1143-6
      [6]
      B.L. Zhang, S.G. Zhang, and B. Liu, Comparative study on transition element doped Mn‒Zr‒Ti oxides catalysts for the low-temperature selective catalytic reduction of NO with NH3, React. Kinet. Mech. Catal., 127(2019), No. 2, p. 637. doi: 10.1007/s11144-019-01586-w
      [7]
      W.J. Li, T.Y. Li, and M.Y. Wey, Preferred enhancement of fast-SCR by Mn/CeSiOx catalyst: study on Ce/Si promotion and shape dependence, Chem. Eng. J., 403(2021), art. No. 126317. doi: 10.1016/j.cej.2020.126317
      [8]
      L. Chen, S. Ren, L. Liu, B.X. Su, J. Yang, Z.C. Chen, M.M. Wang, and Q.C. Liu, Catalytic performance over Mn‒Ce catalysts for NH3-SCR of NO at low temperature: Different zeolite supports, J. Environ. Chem. Eng., 10(2022), No. 2, p. 107167. doi: 10.1016/j.jece.2022.107167
      [9]
      F.M. Wang, B.X. Shen, S.W. Zhu, and Z. Wang, Promotion of Fe and Co doped Mn‒Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance, Fuel, 249(2019), p. 54. doi: 10.1016/j.fuel.2019.02.113
      [10]
      G. Yang, H.T. Zhao, X. Luo, K.Q. Shi, H.B. Zhao, W.K. Wang, Q.H. Chen, H. Fan, and T. Wu, Promotion effect and mechanism of the addition of Mo on the enhanced low temperature SCR of NOx by NH3 over MnOx/γ‒Al2O3 catalysts, Appl. Catal. B, 245(2019), p. 743. doi: 10.1016/j.apcatb.2018.12.080
      [11]
      Y.P. Zhang, T.J. Huang, R. Xiao, H.T. Xu, K. Shen, and C.C. Zhou, A comparative study on the Mn/TiO2‒M(M = Sn, Zr or Al)Ox catalysts for NH3-SCR reaction at low temperature, Environ. Technol., 39(2018), No. 10, p. 1284. doi: 10.1080/21622515.2017.1329345
      [12]
      D.A. Peña, B.S. Uphade, and P.G. Smirniotis, TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals, J. Catal., 221(2004), No. 2, p. 421. doi: 10.1016/j.jcat.2003.09.003
      [13]
      B.L. Zhang, M. Liebau, W. Suprun, B. Liu, S.G. Zhang, and R. Gläser, Suppression of N2O formation by H2O and SO2 in the selective catalytic reduction of NO with NH3 over a Mn/Ti–Si catalyst, Catal. Sci. Technol., 9(2019), No. 17, p. 4759. doi: 10.1039/C9CY01156K
      [14]
      B.L. Zhang, L.F. Deng, B. Liu, C.Y. Luo, M. Liebau, S.G. Zhang, and R. Gläser, Synergistic effect of cobalt and niobium in Co3–Nb–Ox on performance of selective catalytic reduction of NO with NH3, Rare Met., 41(2022), No. 1, p. 166. doi: 10.1007/s12598-021-01790-5
      [15]
      S.J. Yang, F.H. Qi, S.C. Xiong, H. Dang, Y. Liao, P.K. Wong, and J.H. Li, MnOx supported on Fe‒Ti spinel: a novel Mn based low temperature SCR catalyst with a high N2 selectivity, Appl. Catal. B, 181(2016), p. 570. doi: 10.1016/j.apcatb.2015.08.023
      [16]
      L. Qiu, J.J. Meng, D.D. Pang, C.L. Zhang, and F. Ouyang, Reaction and characterization of Co and Ce doped Mn/TiO2 catalysts for low-temperature SCR of NO with NH3, Catal. Lett., 145(2015), No. 7, p. 1500. doi: 10.1007/s10562-015-1556-x
      [17]
      X.J. Yao, L. Chen, J. Cao, Y. Chen, M. Tian, F.M. Yang, J.F. Sun, C.J. Tang, and L. Dong, Enhancing the deNOx performance of MnOx/CeO2–ZrO2 nanorod catalyst for low-temperature NH3-SCR by TiO2 modification, Chem. Eng. J., 369(2019), p. 46. doi: 10.1016/j.cej.2019.03.052
      [18]
      M. Casanova, K. Schermanz, J. Llorca, and A. Trovarelli, Improved high temperature stability of NH3-SCR catalysts based on rare earth vanadates supported on TiO2‒WO3‒SiO2, Catal. Today, 184(2012), No. 1, p. 227. doi: 10.1016/j.cattod.2011.10.035
      [19]
      D.M. Meng, W.C. Zhan, Y. Guo, Y.L. Guo, L. Wang, and G.Z. Lu, A highly effective catalyst of Sm–MnOx for the NH3-SCR of NOx at low temperature: promotional role of Sm and its catalytic performance, ACS Catal., 5(2015), No. 10, p. 5973. doi: 10.1021/acscatal.5b00747
      [20]
      Q.L. Chen, R.T. Guo, Q.S. Wang, W.G. Pan, W.H. Wang, N.Z. Yang, C.Z. Lu, and S.X. Wang, The catalytic performance of Mn/TiWOx catalyst for selective catalytic reduction of NOx with NH3, Fuel, 181(2016), p. 852. doi: 10.1016/j.fuel.2016.05.045
      [21]
      X.Z. Shao, H.Y. Wang, M.L. Yuan, J. Yang, W.C. Zhan, L. Wang, Y. Guo, and G.Z. Lu, Thermal stability of Si-doped V2O5/WO3–TiO2 for selective catalytic reduction of NOx by NH3, Rare Met., 38(2019), No. 4, p. 292. doi: 10.1007/s12598-018-1176-x
      [22]
      D.H. Wang, Q. Yao, C.H. Mou, S.E. Hui, and Y.Q. Niu, New insight into N2O formation from NH3 oxidation over MnOx/TiO2 catalyst, Fuel, 254(2019), art. No. 115719. doi: 10.1016/j.fuel.2019.115719
      [23]
      S. Yang, S. Xiong, Y. Liao, X. Xiao, F. Qi, Y. Peng, Y. Fu, W. Shan, and J. Li, Mechanism of N2O formation during the low-temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel, Environ. Sci. Technol., 48(2014), No. 17, p. 10354. doi: 10.1021/es502585s
      [24]
      H.Y. Chen, Z.H. Wei, M. Kollar, F. Gao, Y.L. Wang, J. Szanyi, and C.H.F. Peden, A comparative study of N2O formation during the selective catalytic reduction of NOx with NH3 on zeolite supported Cu catalysts, J. Catal., 329(2015), p. 490. doi: 10.1016/j.jcat.2015.06.016
      [25]
      P. Lalinda, U.S. Kulathunga, I.J. Lakruwani, D.J. Champa, and M.J. Pradeep, A simple and novel synthetic route to prepare anatase TiO2 nanopowders from natural ilmenite via the H3PO4/NH3 process, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 846. doi: 10.1007/s12613-020-2030-3
      [26]
      Z. Amirsardari, A. Dourani, M.A. Amirifar, and N.G. Massoom, Comparative characterization of iridium loading on catalyst assessment under different conditions, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1233. doi: 10.1007/s12613-020-2058-4
      [27]
      H. Du, Z.T. Han, Q.M. Wang, Y. Gao, C. Gao, J.M. Dong, and X.X. Pan, Effects of ferric and manganese precursors on catalytic activity of Fe–Mn/TiO2 catalysts for selective reduction of NO with ammonia at low temperature, Environ. Sci. Pollut. Res., 27(2020), No. 32, p. 40870. doi: 10.1007/s11356-020-10073-y
      [28]
      P. Sun, R.T. Guo, S.M. Liu, S.X. Wang, W.G. Pan, M.Y. Li, S.W. Liu, J. Liu, and X. Sun, Enhancement of the low-temperature activity of Ce/TiO2 catalyst by Sm modification for selective catalytic reduction of NOx with NH3, Mol. Catal., 433(2017), p. 224. doi: 10.1016/j.mcat.2016.12.025
      [29]
      D.M. Meng, W.C. Zhan, Y. Guo, Y.L. Guo, Y.S. Wang, L. Wang, and G.Z. Lu, A highly effective catalyst of Sm‒Mn mixed oxide for the selective catalytic reduction of NOx with ammonia: Effect of the calcination temperature, J. Mol. Catal. A: Chem., 420(2016), p. 272. doi: 10.1016/j.molcata.2016.04.028
      [30]
      Q.C. Yu, Y. Deng, F. Wang, Y.B. Feng, X.M. Chen, B. Yang, and D.C. Liu, Preparation of activated ceria and its desulfurization performance, Int. J. Miner. Metall. Mater., 22(2015), No. 9, p. 992. doi: 10.1007/s12613-015-1160-5
      [31]
      S.B. Ma, X.Y. Zhao, Y.S. Li, T.R. Zhang, F.L. Yuan, X.Y. Niu, and Y.J. Zhu, Effect of W on the acidity and redox performance of the Cu0.02Fe0.2WaTiOx (a = 0.01, 0.02, 0.03) catalysts for NH3-SCR of NO, Appl. Catal. B, 248(2019), p. 226. doi: 10.1016/j.apcatb.2019.02.015
      [32]
      B.L. Zhang, M. Liebau, B. Liu, L. Li, S.G. Zhang, and R. Gläser, Selective catalytic reduction of NOx with NH3 over Mn–Zr–Ti mixed oxide catalysts, J. Mater. Sci., 54(2019), No. 9, p. 6943. doi: 10.1007/s10853-019-03369-z
      [33]
      H. Liu, Z.X. Fan, C.Z. Sun, S.H. Yu, S. Feng, W. Chen, D.Z. Chen, C.J. Tang, F. Gao, and L. Dong, Improved activity and significant SO2 tolerance of samarium modified CeO2–TiO2 catalyst for NO selective catalytic reduction with NH3, Appl. Catal. B, 244(2019), p. 671. doi: 10.1016/j.apcatb.2018.12.001
      [34]
      J. Fan, P. Ning, Z.X. Song, X. Liu, L.Y. Wang, J. Wang, H.M. Wang, K.X. Long, and Q.L. Zhang, Mechanistic aspects of NH3-SCR reaction over CeO2/TiO2–ZrO2–SO42− catalyst: in situ DRIFTs investigation, Chem. Eng. J., 334(2018), p. 855. doi: 10.1016/j.cej.2017.10.011
      [35]
      L.L. Li, L. Zhang, K.L. Ma, W.X. Zou, Y. Cao, Y. Xiong, C.J. Tang, and L. Dong, Ultra-low loading of copper modified TiO2/CeO2 catalysts for low-temperature selective catalytic reduction of NO by NH3, Appl. Catal. B, 207(2017), p. 366. doi: 10.1016/j.apcatb.2017.02.041
      [36]
      S. Ali, L.Q. Chen, Z.B. Li, T.R. Zhang, R. Li, S. Bakhtiar, X.S. Leng, F.L. Yuan, X.Y. Niu, and Y.J. Zhu, Cux‒Nb1.1−x (x = 0.45, 0.35, 0.25, 0.15) bimetal oxides catalysts for the low temperature selective catalytic reduction of NO with NH3, Appl. Catal. B, 236(2018), p. 25. doi: 10.1016/j.apcatb.2018.05.014
      [37]
      Y.J. Kim, H.J. Kwon, I.S. Nam, J.W. Choung, J.K. Kil, H.J. Kim, M.S. Cha, and G.K. Yeo, High deNOx performance of Mn/TiO2 catalyst by NH3, Catal. Today, 151(2010), No. 3, p. 244.
      [38]
      M. Salazar, S. Hoffmann, L. Tillmann, V. Singer, R. Becker, and W. Grünert, Hybrid catalysts for the selective catalytic reduction (SCR) of NO by NH3: Precipitates and physical mixtures, Appl. Catal. B, 218(2017), p. 793. doi: 10.1016/j.apcatb.2017.06.079
      [39]
      S.J. Yang, C.Z. Wang, J.H. Li, N.Q. Yan, L. Ma, and H.Z. Chang, Low temperature selective catalytic reduction of NO with NH3 over Mn‒Fe spinel: performance, mechanism and kinetic study, Appl. Catal. B, 110(2011), p. 71. doi: 10.1016/j.apcatb.2011.08.027

    Catalog


    • /

      返回文章
      返回