留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
数据统计

分享

计量
  • 文章访问数:  241
  • HTML全文浏览量:  124
  • PDF下载量:  23
  • 被引次数: 0
Lebiao Yang, Xiaona Ren, Chao Cai, Pengju Xue, M. Irfan Hussain, Yusheng Shi, and Changchun Ge, Effect of the capsule on deformation and densification behavior of nickel-based superalloy compact during hot isostatic pressing, Int. J. Miner. Metall. Mater.,(2021). https://doi.org/10.1007/s12613-021-2349-4
Cite this article as:
Lebiao Yang, Xiaona Ren, Chao Cai, Pengju Xue, M. Irfan Hussain, Yusheng Shi, and Changchun Ge, Effect of the capsule on deformation and densification behavior of nickel-based superalloy compact during hot isostatic pressing, Int. J. Miner. Metall. Mater.,(2021). https://doi.org/10.1007/s12613-021-2349-4
引用本文 PDF XML SpringerLink
  • Research Article

    Effect of the capsule on deformation and densification behavior of nickel-based superalloy compact during hot isostatic pressing

    + Author Affiliations
    • The Shima yield criterion used in finite element analysis for nickel-based superalloy powder compact during hot isostatic pressing (HIP) was modified through uniaxial compression experiments. The influence of cylindrical capsule characteristics on FGH4096M superalloy powder compact deformation and densification behavior during HIP was investigated through simulations and experiments. Results reveals the simulation shrinkage prediction fitted well with the experimental shrinkage including a maximum shrinkage error of 1.5%. It was shown that the axial shrinkage was 1.7% bigger than radial shrinkage for a cylindrical capsule with the size of Φ50 mm × 100 mm due to the force arm difference along the axial and radial direction of the capsule. The stress deviated from the isostatic state in the capsule led to the uneven shrinkage and non-uniform densification of the powder compact. The ratio of the maximum radial displacement to axial displacement increased from 0.47 to 0.75 with the capsule thickness increased from 2 mm to 4 mm. The pressure transmission was related to the capsule thickness and the capsule material performance, and physical parameters in the HIP process.

    • loading

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

    • /

      返回文章
      返回