留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 1
Jan.  2023

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  734
  • HTML全文浏览量:  238
  • PDF下载量:  82
  • 被引次数: 0
Lebiao Yang, Xiaona Ren, Chao Cai, Pengju Xue, M. Irfan Hussain, Yusheng Shi, and Changchun Ge, Effect of the capsule on deformation and densification behavior of nickel-based superalloy compact during hot isostatic pressing, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 122-130. https://doi.org/10.1007/s12613-021-2349-4
Cite this article as:
Lebiao Yang, Xiaona Ren, Chao Cai, Pengju Xue, M. Irfan Hussain, Yusheng Shi, and Changchun Ge, Effect of the capsule on deformation and densification behavior of nickel-based superalloy compact during hot isostatic pressing, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 122-130. https://doi.org/10.1007/s12613-021-2349-4
引用本文 PDF XML SpringerLink
研究论文

包套对热等静压过程中镍基高温合金形变和致密化的影响

  • 通讯作者:

    任晓娜    E-mail: renxn@ustb.edu.cn

    蔡超    E-mail: chaocai@hust.edu.cn

文章亮点

  • (1) 通过单轴压缩试验修正了用于镍基高温合金热等静压成型分析的有限元Shima屈服准则。
  • (2) 确定了FGH4096M粉末压块屈服准则系数。
  • (3) 利用修正后的Shima模型对试样致密化进行模拟,试样收缩的实验与模拟结果吻合较好,最大误差1.5%。
  • 热等静压近净成形工艺对于制备复杂部件具有极大优势,准确预测热等静压成形中部件形变收缩是实现该技术制备复杂部件的关键。而包套对压力的传递具有延迟或屏蔽效应,对内部粉末形变收缩和致密化过程具有重要影响。因此,本文结合热等静压中断实验,对传统的有限元Shima屈服准则进行了修正,确定了用于模拟FGH4096M高温合金热等静压过程的Shima模型屈服准则的关键参数,将热等静压粉末致密化的过程可视化。结果表明,模拟收缩与实验收缩结果吻合较好,最大误差为1.5%;对于ϕ50 mm × 100 mm的圆柱形包套,在轴向与径向的力臂差作用下,其轴向收缩比径向高1.7%;由于尺寸和力臂差的影响,当包套厚度从2 mm提升到4 mm时,试样的径向与轴向最大位移比从0.47提升到0.75。经综合分析,包套对内部粉体的压力屏蔽值可以表达为 $P = \dfrac{{\sqrt 3 \left( {{b^2} - {a^2}} \right)}}{{3{a^2}{b^2}}}{r^2}{\sigma _{\rm{s}}}$
  • Research Article

    Effect of the capsule on deformation and densification behavior of nickel-based superalloy compact during hot isostatic pressing

    + Author Affiliations
    • The Shima yield criterion used in finite element analysis for nickel-based superalloy powder compact during hot isostatic pressing (HIP) was modified through uniaxial compression experiments. The influence of cylindrical capsule characteristics on FGH4096M superalloy powder compact deformation and densification behavior during HIP was investigated through simulations and experiments. Results revealed the simulation shrinkage prediction fitted well with the experimental shrinkage including a maximum shrinkage error of 1.5%. It was shown that the axial shrinkage was 1.7% higher than radial shrinkage for a cylindrical capsule with the size of ϕ50 mm × 100 mm due to the force arm difference along the axial and radial direction of the capsule. The stress deviated from the isostatic state in the capsule led to the uneven shrinkage and non-uniform densification of the powder compact. The ratio of the maximum radial displacement to axial displacement increased from 0.47 to 0.75 with the capsule thickness increasing from 2 to 4 mm. The pressure transmission is related to the capsule thickness, the capsule material performance, and physical parameters in the HIP process.
    • loading
    • [1]
      K. Chen, S.Y. Rui, F. Wang, J.X. Dong, and Z.H. Yao, Microstructure and homogenization process of as-cast GH4169D alloy for novel turbine disk, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 889. doi: 10.1007/s12613-019-1802-0
      [2]
      L.B. Yang, X.N. Ren, C.C. Ge, and Q.Z. Yan, Status and development of powder metallurgy nickel-based disk superalloys, Int. J. Mater. Res., 110(2019), No. 10, p. 901. doi: 10.3139/146.111820
      [3]
      S.S. Sun, Q. Teng, Y. Xie, T. Liu, R. Ma, J. Bai, C. Cai, and Q.S. Wei, Two-step heat treatment for laser powder bed fusion of a nickel-based superalloy with simultaneously enhanced tensile strength and ductility, Addit. Manuf., 46(2021), art. No. 102168.
      [4]
      C. Cai, K.K. Pan, Q. Teng, X.Y. Gao, B. Song, J. Liu, Q.S. Wei, K. Zhou, and Y.S. Shi, Simultaneously enhanced strength and ductility of FGH4097 nickel-based alloy via a novel hot isostatic pressing strategy, Mater. Sci. Eng. A, 760(2019), p. 19. doi: 10.1016/j.msea.2019.05.081
      [5]
      N.L. Loh and K.Y. Sia, An overview of hot isostatic pressing, J. Mater. Process. Technol., 30(1992), No. 1, p. 45. doi: 10.1016/0924-0136(92)90038-T
      [6]
      C. Cai, X.Y. Gao, Q. Teng, R. Kiran, J. Liu, Q.S. Wei, and Y.S. Shi, Hot isostatic pressing of a near α-Ti alloy: Temperature optimization, microstructural evolution and mechanical performance evaluation, Mater. Sci. Eng. A, 802(2021), art. No. 140426. doi: 10.1016/j.msea.2020.140426
      [7]
      H.V. Atkinson and S. Davies, Fundamental aspects of hot isostatic pressing: An overview, Metall. Mater. Trans. A, 31(2000), No. 12, p. 2981. doi: 10.1007/s11661-000-0078-2
      [8]
      F.L. Han, The PM HIP parts process and design guidelines, Powder Metall. Technol., 34(2016), No. 1, p. 62.
      [9]
      C.G. Hjorth, HIP powder metal near-net shapes for demanding environment and applications, J. Iron Steel Res. Int., 14(2007), No. 5, p. 121. doi: 10.1016/S1006-706X(08)60064-3
      [10]
      L.M. Tan, Y.P. Li, F. Liu, Y. Nie, and L. Jiang, Superplastic behavior of a powder metallurgy superalloy during isothermal compression, J. Mater. Sci. Technol., 35(2019), No. 11, p. 2591. doi: 10.1016/j.jmst.2019.05.025
      [11]
      Y. Wu, P.J. Xue, Q.S. Wei, and Y.S. Shi, Near-net-shaping hot isostatic pressing of Ti6Al4V alloys monolithic bladed disks, Rare Met. Mater. Eng., 44(2015), No. 2, p. 360.
      [12]
      C.L. Qiu, M.M. Attallah, X.H. Wu, and P. Andrews, Influence of hot isostatic pressing temperature on microstructure and tensile properties of a nickel-based superalloy powder, Mater. Sci. Eng. A, 564(2013), p. 176. doi: 10.1016/j.msea.2012.11.084
      [13]
      C. Broeckmann, Hot isostatic pressing of near net shape components - Process fundamentals and future challenges, Powder Metall., 55(2012), No. 3, p. 176. doi: 10.1179/0032589912Z.00000000063
      [14]
      G. Aryanpour, S. Mashl, and V. Warke, Elastoplastic–viscoplastic modelling of metal powder compaction: Application to hot isostatic pressing, Powder Metall., 56(2013), No. 1, p. 14. doi: 10.1179/1743290112Y.0000000027
      [15]
      S. Shima and M. Oyane, Plasticity theory for porous metals, Int. J. Mech. Sci., 18(1976), No. 6, p. 285. doi: 10.1016/0020-7403(76)90030-8
      [16]
      Y. Zhang and F.Z. Wang, Numerical simulation of effects of pressure on densification of hot isostatic pressing of CuCr25 powder, Hot Work. Technol., 47(2018), No. 2, p. 76.
      [17]
      Z.Q. Hou, Y.S. Shi, G.C. Liu, J.W. Wang, and Q.S. Wei, Investigation can’s deformation and densification for stainless steel powders during hot isostatic pressing, J. Mater. Metall., 10(2011), No. 2, p. 136.
      [18]
      R.P. Guo, L. Xu, J. Wu, Z.G. Lu, and R. Yang, Simulation of container design for powder metallurgy titanium components through hot-isostatic-pressing, Mater. Sci. Forum, 817(2015), p. 610. doi: 10.4028/www.scientific.net/MSF.817.610
      [19]
      L.H. Lang, G. Wang, X.N. Huang, S. Yu, W. Duan, and Q.Y. Xu, Shielding effect of capsules and its impact on mechanical properties of P/M aluminium alloys fabricated by hot isostatic pressing, Chin. J. Nonferrous Met., 26(2016), No. 2, p. 261.
      [20]
      Y.J. Yin, P. Zhang, J.X. Zhou, and Y.S. Shi, Correction on Shima yield criterion for Ti6Al4V powder HIP process, J. Huazhong Univ. Sci. Technol., 46(2018), No. 6, p. 14.
      [21]
      L.H. Lang, G.L. Bu, Y. Xue, and D.X. Zhang, Determine key parameters of simulation constitutive and process optimization for titanium alloy (Ti–6Al–4V) hot isostatic pressing, J. Plast. Eng., 18(2011), No. 4, p. 34.
      [22]
      G.C. Liu, Y.S. Shi, Q.S. Wei, and J.W. Wang, Finite element analysis of pressure influence on densification of titanium alloy powder under hot isostatic pressing, Key Eng. Mater., 450(2010), p. 206. doi: 10.4028/www.scientific.net/KEM.450.206
      [23]
      Z.H. Qu, J.T. Liu, G.X. Zhang, Y.W. Zhang, and Y. Tao, Numerical simulation of hot isostatic pressing process of FGH4097 superalloy, Trans. Mater. Heat Treat., 38(2017), No. 7, p. 173.
      [24]
      A. Nohara, T. Nakagawa, T. Soh, and T. Shinke, Numerical simulation of the densification behaviour of metal powder during hot isostatic pressing, Int. J. Numer. Methods Eng., 25(1988), No. 1, p. 213. doi: 10.1002/nme.1620250117
      [25]
      B. Fang, G.F. Tian, Z. Ji, M.Y. Wang, C.C. Jia, and S.W. Yang, Study on the thermal deformation behavior and microstructure of FGH96 heat extrusion alloy during two-pass hot deformation, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 657. doi: 10.1007/s12613-019-1774-0
      [26]
      Y.F. Feng, X.M. Zhou, J.W. Zou, and G.F. Tian, Effect of cooling rate during quenching on the microstructure and creep property of nickel-based superalloy FGH96, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 493. doi: 10.1007/s12613-019-1756-2
      [27]
      A. Svoboda, H.Å. Häggblad, and M. Näsström, Simulation of hot isostatic pressing of metal powder components to near net shape, Eng. Comput., 13(1996), No. 5, p. 13. doi: 10.1108/02644409610120713
      [28]
      H.H. Chen, Mac Finite Element Example Analysis Tutorial, China Machine Press, Beijing, 2002.
      [29]
      V. Samarov, D. Seliverstov, and F.H. (Sam) Froes, Fabrication of near-net-shape cost-effective titanium components by use of prealloyed powders and hot isostatic pressing, [in] M. Qian and F.H. (Sam) Froes, eds., Titanium Powder Metallurgy: Science, Technology and Applications, Butterworth-Heinemann, Waltham, 2015, p. 313.
      [30]
      H. ElRakayby, H. Kim, S. Hong, and K. Kim, An investigation of densification behavior of nickel alloy powder during hot isostatic pressing, Adv. Powder Technol., 26(2015), No. 5, p. 1314. doi: 10.1016/j.apt.2015.07.005
      [31]
      C. Cai, X. Wu, W. Liu, W. Zhu, H. Chen, J.C.D. Qiu, C.N. Sun, J. Liu, Q.S. Wei, and Y.S. Shi, Selective laser melting of near-α titanium alloy Ti–6Al–2Zr–1Mo–1V: Parameter optimization, heat treatment and mechanical performance, J. Mater. Sci. Technol., 57(2020), p. 51. doi: 10.1016/j.jmst.2020.05.004
      [32]
      C.Z. Lin, Stress analysis of a cylinder under uniform radial pressure, Mech. Eng., 2(1988), p. 52.
      [33]
      P. Dong, An analysis of the shielding effect of container on isocratic pressing, Met. Form. Technol., 20(2002), No. 3, p. 12.

    Catalog


    • /

      返回文章
      返回