Cite this article as:

Lihua Liu, Ning Li, Jingrui Han, Kaili Yao, and Hongyan Liang, Multicomponent transition metal phosphide for oxygen evolution, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp.503-512. https://dx.doi.org/10.1007/s12613-021-2352-9
Lihua Liu, Ning Li, Jingrui Han, Kaili Yao, and Hongyan Liang, Multicomponent transition metal phosphide for oxygen evolution, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp.503-512. https://dx.doi.org/10.1007/s12613-021-2352-9
引用本文 PDF XML SpringerLink

用于氧析出反应的多组分过渡金属磷化物

摘要: 析氧反应(OER)是许多能量存储和转换系统的动力学瓶颈,使用OER电催化剂能降低反应势磊,从而提高能量转换效率。过渡金属磷化物(TMPs)是优良的OER电催化剂,但是目前报道的TMPs催化剂多由三种或更少的金属组分组成。探索更多组分的TMPs不仅有助于扩展催化剂门类,而且对于理解组元间的协同作用具有促进作用。本文通过水热生长和低温磷化策略,在二维碳化钛 (MXene) 薄片上制备了具有可控元素(Ni、Fe、Mn、Co、Cu)组分的TMPs,并在1 M KOH电解质溶液中测试了其电催化OER性能。实验结果表明,四元NiFeMnCoP/MXene是活性最高的催化剂,在10 mA·cm−2电流密度下的过电位仅为240 mV,塔菲尔斜率为41.43 mV·dec−1,并且具有良好的长期电化学稳定性,优于商用氧化钌催化剂。电催化机理研究表明,NiFeMnCoP/MXene催化剂增强的OER 性能源于多元素间强的电子相互作用以及TMPs与MXene间的协同作用。

 

Multicomponent transition metal phosphide for oxygen evolution

Abstract: Transition metal phosphides (TMPs) have exhibited decent performance in an oxygen evolution reaction (OER), which is a kinetic bottleneck in many energy storages and conversion systems. Most reported catalysts are composed of three or fewer metallic components. The inherent complexity of multicomponent TMPs with more than four metallic components hinders their investigation in rationally designing the structure and, more importantly, comprehending the component-activity correlation. Through hydrothermal growth and subsequent phosphorization, we reported a facile strategy for combining TMPs with tunable elemental compositions (Ni, Fe, Mn, Co, Cu) on a two-dimensional titanium carbide (MXene) flake. The obtained TMPs/MXene hybrid nanostructures demonstrate homogeneously distributed elements. They exhibit high electrical conductivity and strong interfacial interaction, resulting in an accelerated reaction kinetics and long-term stability. The results of different component catalysts’ OER performance show that NiFeMnCoP/MXene is the most active catalyst, with a low overpotential of 240 mV at 10 mA·cm−2, a small Tafel slope of 41.43 mV·dec−1, and a robust long-term electrochemical stability. According to the electrocatalytic mechanism investigation, the enhanced NiFeMnCoP/MXene OER performance is due to the strong synergistic effect of the multi-elemental composition. Our work, therefore, provides a scalable synthesis route for multi-elemental TMPs and a valuable guideline for efficient MXene-supported catalysts design.

 

/

返回文章
返回