留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 3
Mar.  2022

图(8)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  2639
  • HTML全文浏览量:  1005
  • PDF下载量:  124
  • 被引次数: 0
Lihua Liu, Ning Li, Jingrui Han, Kaili Yao,  and Hongyan Liang, Multicomponent transition metal phosphide for oxygen evolution, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 503-512. https://doi.org/10.1007/s12613-021-2352-9
Cite this article as:
Lihua Liu, Ning Li, Jingrui Han, Kaili Yao,  and Hongyan Liang, Multicomponent transition metal phosphide for oxygen evolution, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 503-512. https://doi.org/10.1007/s12613-021-2352-9
引用本文 PDF XML SpringerLink
研究论文

用于氧析出反应的多组分过渡金属磷化物

    * 共同第一作者
  • 通讯作者:

    梁红艳    E-mail: hongyan.liang@tju.edu.cn

文章亮点

  • (1) 利用MXene表面独特的负电基团,制备了与MXene偶联的多组分TMPs。
  • (2) 制备的NiFeMnCoP/MXene催化剂具有大的比表面积和高的本征活性。
  • (3) 在碱性电解液中具有比肩商用RuO2的析氧性能。
  • 析氧反应(OER)是许多能量存储和转换系统的动力学瓶颈,使用OER电催化剂能降低反应势磊,从而提高能量转换效率。过渡金属磷化物(TMPs)是优良的OER电催化剂,但是目前报道的TMPs催化剂多由三种或更少的金属组分组成。探索更多组分的TMPs不仅有助于扩展催化剂门类,而且对于理解组元间的协同作用具有促进作用。本文通过水热生长和低温磷化策略,在二维碳化钛 (MXene) 薄片上制备了具有可控元素(Ni、Fe、Mn、Co、Cu)组分的TMPs,并在1 M KOH电解质溶液中测试了其电催化OER性能。实验结果表明,四元NiFeMnCoP/MXene是活性最高的催化剂,在10 mA·cm−2电流密度下的过电位仅为240 mV,塔菲尔斜率为41.43 mV·dec−1,并且具有良好的长期电化学稳定性,优于商用氧化钌催化剂。电催化机理研究表明,NiFeMnCoP/MXene催化剂增强的OER 性能源于多元素间强的电子相互作用以及TMPs与MXene间的协同作用。

  • Research Article

    Multicomponent transition metal phosphide for oxygen evolution

    + Author Affiliations
    • Transition metal phosphides (TMPs) have exhibited decent performance in an oxygen evolution reaction (OER), which is a kinetic bottleneck in many energy storages and conversion systems. Most reported catalysts are composed of three or fewer metallic components. The inherent complexity of multicomponent TMPs with more than four metallic components hinders their investigation in rationally designing the structure and, more importantly, comprehending the component-activity correlation. Through hydrothermal growth and subsequent phosphorization, we reported a facile strategy for combining TMPs with tunable elemental compositions (Ni, Fe, Mn, Co, Cu) on a two-dimensional titanium carbide (MXene) flake. The obtained TMPs/MXene hybrid nanostructures demonstrate homogeneously distributed elements. They exhibit high electrical conductivity and strong interfacial interaction, resulting in an accelerated reaction kinetics and long-term stability. The results of different component catalysts’ OER performance show that NiFeMnCoP/MXene is the most active catalyst, with a low overpotential of 240 mV at 10 mA·cm−2, a small Tafel slope of 41.43 mV·dec−1, and a robust long-term electrochemical stability. According to the electrocatalytic mechanism investigation, the enhanced NiFeMnCoP/MXene OER performance is due to the strong synergistic effect of the multi-elemental composition. Our work, therefore, provides a scalable synthesis route for multi-elemental TMPs and a valuable guideline for efficient MXene-supported catalysts design.

    • loading
    • [1]
      U. Aslam, V.G. Rao, S. Chavez, and S. Linic, Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures, Nat. Catal., 1(2018), No. 9, p. 656. doi: 10.1038/s41929-018-0138-x
      [2]
      Y.M. Shi and B. Zhang, Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction, Chem. Soc. Rev., 45(2016), No. 6, p. 1529. doi: 10.1039/C5CS00434A
      [3]
      X.X. Zou and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting, Chem. Soc. Rev., 44(2015), No. 15, p. 5148. doi: 10.1039/C4CS00448E
      [4]
      X. Wang, C.X. Liu, C.C. Gao, K.L. Yao, S.S.M. Masouleh, R. Berté, H.R. Ren, L.D.S. Menezes, E. Cortés, I.C. Bicket, H.Y. Wang, N. Li, Z.L. Zhang, M. Li, W. Xie, Y.F. Yu, Y.R. Fang, S.P. Zhang, H.X. Xu, A. Vomiero, Y.C. Liu, G.A. Botton, S.A. Maier, and H.Y. Liang, Self-constructed multiple plasmonic hotspots on an individual fractal to amplify broadband hot electron generation, ACS Nano, 15(2021), No. 6, p. 10553. doi: 10.1021/acsnano.1c03218
      [5]
      P.Q. Chen, H. Wu, Y.X. Tai, Y.F. Gao, J.Y. Chen, and J.G. Cheng, Novel confinement combustion method to nanosized WC/C for efficient electrocatalytic oxygen reduction, Int. J. Miner. Metall. Mater., (2021). https://doi.org/10.1007/s12613-021-2265-7.
      [6]
      G.Q. Li, P.K. Wen, C.Q. Gao, T.Y. Zhang, J.Y. Hu, Y.H. Zhang, S.Y. Guan, Q.F. Li, and B. Li, Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2–C electrocatalyst for methanol oxidation reaction, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1224. doi: 10.1007/s12613-020-2076-2
      [7]
      H.G. Zhao, G.J. Liu, S.J. You, F.V.A. Camargo, M. Zavelani-Rossi, X.H. Wang, C.C. Sun, B. Liu, Y.M. Zhang, G.T. Han, A. Vomiero, and X. Gong, Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators, Energy Environ. Sci., 14(2021), No. 1, p. 396. doi: 10.1039/D0EE02235G
      [8]
      H.G. Zhao, R.J. Sun, Z.F. Wang, K.F. Fu, X. Hu, and Y.H. Zhang, Zero-dimensional perovskite nanocrystals for efficient luminescent solar concentrators, Adv. Funct. Mater., 29(2019), No. 30, art. No. 1902262. doi: 10.1002/adfm.201902262
      [9]
      C.C. Gao, Y.Z. Jiang, C.J. Sun, J.R. Han, T.W. He, Y.M. Huang, K.L. Yao, M. Han, X. Wang, Y.K. Wang, Y.N. Gao, Y.C. Liu, M.J. Yuan, and H.Y. Liang, Multifunctional naphthol sulfonic salt incorporated in lead-free 2D tin halide perovskite for red light-emitting diodes, ACS Photonics, 7(2020), No. 8, p. 1915. doi: 10.1021/acsphotonics.0c00497
      [10]
      K.L. Yao, Y.J. Xia, J. Li, N. Wang, J.R. Han, C.C. Gao, M. Han, G.Q. Shen, Y.C. Liu, A. Seifitokaldani, X.H. Sun, and H.Y. Liang, Metal–organic framework derived copper catalysts for CO2 to ethylene conversion, J. Mater. Chem. A, 8(2020), No. 22, p. 11117. doi: 10.1039/D0TA02395G
      [11]
      N. Wang, R.K. Miao, G. Lee, A. Vomiero, D. Sinton, A.H. Ip, H.Y. Liang, and E.H. Sargent, Suppressing the liquid product crossover in electrochemical CO2 reduction, SmartMat, 2(2021), No. 1, p. 12. doi: 10.1002/smm2.1018
      [12]
      M. Han, N. Wang, B. Zhang, Y.J. Xia, J. Li, J.R. Han, K.L. Yao, C.C. Gao, C.N. He, Y.C. Liu, Z.M. Wang, A. Seifitokaldani, X.H. Sun, and H.Y. Liang, High-valent nickel promoted by atomically embedded copper for efficient water oxidation, ACS Catal., 10(2020), No. 17, p. 9725. doi: 10.1021/acscatal.0c01733
      [13]
      M.G. Kibria, J.P. Edwards, C.M. Gabardo, C.T. Dinh, A. Seifitokaldani, D. Sinton, and E.H. Sargent, Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design, Adv. Mater., 31(2019), No. 31, art. No. 1807166. doi: 10.1002/adma.201807166
      [14]
      N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, and H.M. Chen, Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives, Chem. Soc. Rev., 46(2017), No. 2, p. 337. doi: 10.1039/C6CS00328A
      [15]
      Y. Wang, D.S. Wang, and Y.D. Li, A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts, SmartMat, 2(2021), No. 1, p. 56. doi: 10.1002/smm2.1023
      [16]
      M. Han, S.C. Li, C. Li, J. Wu, J.R. Han, N. Wang, Y.C. Liu, and H.Y. Liang, Strain-modulated Ni3Al alloy promotes oxygen evolution reaction, J. Alloys Compd., 844(2020), art. No. 156094. doi: 10.1016/j.jallcom.2020.156094
      [17]
      K.J. Zhang, X.Y. Min, T.Z. Zhang, M.Y. Si, J. Jiang, L.Y. Chai, and Y. Shi, Biodeposited nano-CdS drives the in situ growth of highly dispersed sulfide nanoparticles during pyrolysis for enhanced oxygen evolution reaction, ACS Appl. Mater. Interfaces, 12(2020), No. 49, p. 54553. doi: 10.1021/acsami.0c14388
      [18]
      Y.P. Chen, K. Rui, J.X. Zhu, S.X. Dou, and W.P. Sun, Recent progress on nickel-based oxide/(oxy)hydroxide electrocatalysts for the oxygen evolution reaction, Chem. A Eur. J., 25(2019), No. 3, p. 703. doi: 10.1002/chem.201802068
      [19]
      Y.Z. Chen, D.J. Jiang, Z.Q. Gong, J.Y. Li, and L.N. Wang, Anodized metal oxide nanostructures for photoelectrochemical water splitting, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 584. doi: 10.1007/s12613-020-1983-6
      [20]
      P.P. Li, R.B. Zhao, H.Y. Chen, H.B. Wang, P.P. Wei, H. Huang, Q. Liu, T.S. Li, X.F. Shi, Y.Y. Zhang, M.L. Liu, and X.P. Sun, Recent advances in the development of water oxidation electrocatalysts at mild pH, Small, 15(2019), No. 13, art. No. 1805103. doi: 10.1002/smll.201805103
      [21]
      L. An, C. Wei, M. Lu, H.W. Liu, Y.B. Chen, G.G. Scherer, A.C. Fisher, P.X. Xi, Z.J. Xu, and C.H. Yan, Recent development of oxygen evolution electrocatalysts in acidic environment, Adv. Mater., 33(2021), No. 20, art. No. 2006328. doi: 10.1002/adma.202006328
      [22]
      I. Roger, M.A. Shipman, and M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting, Nat. Rev. Chem., 1(2017), art. No. 0003. doi: 10.1038/s41570-016-0003
      [23]
      J.X. Chen, Q.W. Long, K. Xiao, T. Ouyang, N. Li, S.Y. Ye, and Z.Q. Liu, Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction, Sci. Bull., 66(2021), No. 11, p. 1063. doi: 10.1016/j.scib.2021.02.033
      [24]
      H.J. Wang, S.L. Yin, Y. Xu, X.N. Li, A.A. Alshehri, Y. Yamauchi, H.R. Xue, Y.V. Kaneti, and L. Wang, Direct fabrication of tri-metallic PtPdCu tripods with branched exteriors for the oxygen reduction reaction, J. Mater. Chem. A, 6(2018), No. 18, p. 8662. doi: 10.1039/C8TA01698D
      [25]
      Y.V. Kaneti, Y.N. Guo, N.L.W. Septiani, M. Iqbal, X.C. Jiang, T. Takei, B. Yuliarto, Z.A. Alothman, D. Golberg, and Y. Yamauchi, Self-templated fabrication of hierarchical hollow manganese-cobalt phosphide yolk-shell spheres for enhanced oxygen evolution reaction, Chem. Eng. J., 405(2021), art. No. 126580. doi: 10.1016/j.cej.2020.126580
      [26]
      N.L.W. Septiani, Y.V. Kaneti, K.B. Fathoni, Y.N. Guo, Y. Ide, B. Yuliarto, X.C. Jiang, Nugraha, H.K. Dipojono, D. Golberg, and Y. Yamauchi, Tailorable nanoarchitecturing of bimetallic nickel–cobalt hydrogen phosphate via the self-weaving of nanotubes for efficient oxygen evolution, J. Mater. Chem. A, 8(2020), No. 6, p. 3035. doi: 10.1039/C9TA13442E
      [27]
      N.L.W. Septiani, Y.V. Kaneti, K.B. Fathoni, K. Kani, A.E. Allah, B. Yuliarto, Nugraha, H.K. Dipojono, Z.A. Alothman, D. Golberg, and Y. Yamauchi, Self-assembly of two-dimensional bimetallic nickel–cobalt phosphate nanoplates into one-dimensional porous chainlike architecture for efficient oxygen evolution reaction, Chem. Mater., 32(2020), No. 16, p. 7005. doi: 10.1021/acs.chemmater.0c02385
      [28]
      X. Wang, L.L. Chai, J.Y. Ding, L. Zhong, Y.J. Du, T.T. Li, Y. Hu, J.J. Qian, and S.M. Huang, Chemical and morphological transformation of MOF-derived bimetallic phosphide for efficient oxygen evolution, Nano Energy, 62(2019), p. 745. doi: 10.1016/j.nanoen.2019.06.002
      [29]
      N. Zhang, X.B. Feng, D.W. Rao, X. Deng, L.J. Cai, B.C. Qiu, R. Long, Y.J. Xiong, Y. Lu, and Y. Chai, Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation, Nat. Commun., 11(2020), art. No. 4066. doi: 10.1038/s41467-020-17934-7
      [30]
      Y.Y. Wen, Z.T. Wei, J.H. Liu, R. Li, P. Wang, B. Zhou, X. Zhang, J. Li, and Z.X. Li, Synergistic cerium doping and MXene coupling in layered double hydroxides as efficient electrocatalysts for oxygen evolution, J. Energy Chem., 52(2021), p. 412. doi: 10.1016/j.jechem.2020.04.009
      [31]
      X. Li, W.Q. Huang, L.X. Xia, Y.Y. Li, H.W. Zhang, S.F. Ma, Y.M. Wang, X.J. Wang, and G.F. Huang, NiFe2O4/NiFeP heterostructure grown on nickel foam as an efficient electrocatalyst for water oxidation, ChemElectroChem, 7(2020), No. 19, p. 4047. doi: 10.1002/celc.202000958
      [32]
      J.R. Ran, G.P. Gao, F.T. Li, T.Y. Ma, A.J. Du, and S.Z. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, Nat. Commun., 8(2017), art. No. 13907. doi: 10.1038/ncomms13907
      [33]
      L. Yan, B. Zhang, S.Y. Wu, and J.L. Yu, A general approach to the synthesis of transition metal phosphide nanoarrays on MXene nanosheets for pH-universal hydrogen evolution and alkaline overall water splitting, J. Mater. Chem. A, 8(2020), No. 28, p. 14234. doi: 10.1039/D0TA05189F
      [34]
      P. Jiang, Q. Liu, Y.H. Liang, J.Q. Tian, A.M. Asiri, and X.P. Sun, A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase, Angew. Chem. Int. Ed., 53(2014), No. 47, p. 12855. doi: 10.1002/anie.201406848
      [35]
      L.H. Liu, N. Li, M. Han, J.R. Han, and H.Y. Liang, Scalable synthesis of nanoporous high entropy alloys for electrocatalytic oxygen evolution, Rare Met., (2021), https://doi.org/10.1007/s12598-021-01760-x.
      [36]
      Y. Pang, W.C. Xu, S.L. Zhu, Z.D. Cui, Y.Q. Liang, Z.Y. Li, S.L. Wu, C.T. Chang, and S.Y. Luo, Self-supporting amorphous nanoporous NiFeCoP electrocatalyst for efficient overall water splitting, J. Mater. Sci. Technol., 82(2021), p. 96. doi: 10.1016/j.jmst.2020.11.020
      [37]
      J.H. Yu, G.Z. Cheng, and W. Luo, Hierarchical NiFeP microflowers directly grown on Ni foam for efficient electrocatalytic oxygen evolution, J. Mater. Chem. A, 5(2017), No. 22, p. 11229. doi: 10.1039/C7TA02968C
      [38]
      C. Guan, W. Xiao, H.J. Wu, X.M. Liu, W.J. Zang, H. Zhang, J. Ding, Y.P. Feng, S.J. Pennycook, and J. Wang, Hollow Mo-doped CoP nanoarrays for efficient overall water splitting, Nano Energy, 48(2018), p. 73. doi: 10.1016/j.nanoen.2018.03.034
      [39]
      M. Amiri, S.E. Moosavifard, S.S.H. Davarani, S.K. Kaverlavani, and M. Shamsipur, MnCoP hollow nanocubes as novel electrode material for asymmetric supercapacitors, Chem. Eng. J., 420(2021), art. No. 129910. doi: 10.1016/j.cej.2021.129910
      [40]
      M.K. Han, X.W. Yin, H. Wu, Z.X. Hou, C.Q. Song, X.L. Li, L.T. Zhang, and L.F. Cheng, Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band, ACS Appl. Mater. Interfaces, 8(2016), No. 32, p. 21011. doi: 10.1021/acsami.6b06455
      [41]
      H. Liu, X. Ma, H. Hu, Y.Y. Pan, W.N. Zhao, J.L. Liu, X.Y. Zhao, J.L. Wang, Z.X. Yang, Q.S. Zhao, H. Ning, and M.B. Wu, Robust NiCoP/CoP heterostructures for highly efficient hydrogen evolution electrocatalysis in alkaline solution, ACS Appl. Mater. Interfaces, 11(2019), No. 17, p. 15528. doi: 10.1021/acsami.9b00592
      [42]
      Y.H. Liu, N. Ran, R.Y. Ge, J.J. Liu, W.X. Li, Y.Y. Chen, L.Y. Feng, and R.C. Che, Porous Mn-doped cobalt phosphide nanosheets as highly active electrocatalysts for oxygen evolution reaction, Chem. Eng. J., 425(2021), art. No. 131642. doi: 10.1016/j.cej.2021.131642
      [43]
      S.R. Xu, Y.S. Du, X. Liu, X. Yu, C.L. Teng, X.H. Cheng, Y.F. Chen, and Q. Wu, Three-dimensional (3D) hierarchical coral-like Mn-doped Ni2P–Ni5P4/NF catalyst for efficient oxygen evolution, J. Alloys Compd., 826(2020), art. No. 154210. doi: 10.1016/j.jallcom.2020.154210
      [44]
      K. Zhan, C.H. Feng, X.T. Feng, D. Zhao, S. Yue, Y.J. Li, Q.Z. Jiao, H.S. Li, and Y. Zhao, Iron-doped nickel cobalt phosphide nanoarrays with urchin-like structures as high-performance electrocatalysts for oxygen evolution reaction, ACS Sustainable Chem. Eng., 8(2020), No. 16, p. 6273. doi: 10.1021/acssuschemeng.9b07781
      [45]
      Q. Yue, J. Sun, S. Chen, Y. Zhou, H.J. Li, Y. Chen, R.Y. Zhang, G.F. Wei, and Y.J. Kang, Hierarchical mesoporous MXene–NiCoP electrocatalyst for water-splitting, ACS Appl. Mater. Interfaces, 12(2020), No. 16, p. 18570. doi: 10.1021/acsami.0c01303
      [46]
      L.N. Zhou, L. Yu, C. Liu, and Y.J. Li, Electrocatalytic activity sites for the oxygen evolution reaction on binary cobalt and nickel phosphides, RSC Adv., 10(2020), No. 65, p. 39909. doi: 10.1039/D0RA07284B
      [47]
      J.R. Han, S. Hao, Z. Liu, A.M. Asiri, X.P. Sun, and Y.H. Xu, In situ development of amorphous Mn–Co–P shell on MnCo2O4 nanowire array for superior oxygen evolution electrocatalysis in alkaline media, Chem. Commun., 54(2018), No. 9, p. 1077. doi: 10.1039/C7CC08895G

    Catalog


    • /

      返回文章
      返回