留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 11
Nov.  2022

图(9)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  706
  • HTML全文浏览量:  293
  • PDF下载量:  53
  • 被引次数: 0
Zedong Wang, Kaibo Nie, Kunkun Deng, and Jungang Han, Effect of extrusion on the microstructure and mechanical properties of a low-alloyed Mg–2Zn–0.8Sr–0.2Ca matrix composite reinforced by TiC nano-particles, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1981-1990. https://doi.org/10.1007/s12613-021-2353-8
Cite this article as:
Zedong Wang, Kaibo Nie, Kunkun Deng, and Jungang Han, Effect of extrusion on the microstructure and mechanical properties of a low-alloyed Mg–2Zn–0.8Sr–0.2Ca matrix composite reinforced by TiC nano-particles, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1981-1990. https://doi.org/10.1007/s12613-021-2353-8
引用本文 PDF XML SpringerLink
研究论文

挤压对TiC纳米颗粒增强低合金化Mg–2Zn–0.8Sr–0.2Ca基复合材料显微组织和力学性能的影响

  • 通讯作者:

    聂凯波    E-mail: kaibo.nie@gmail.com

文章亮点

  • (1) 成功制备了高强TiC增强Mg–2Zn–0.8Sr–0.2Ca复合材料。
  • (2) 系统地研究了挤压参数对TiC增强Mg–2Zn–0.8Sr–0.2Ca复合材料显微组织的影响规律。
  • (3) 阐明了TiC增强Mg–2Zn–0.8Sr–0.2Ca复合材料的强化机理以及断裂机制。
  • 镁合金作为轻金属材料的代表,在电子、交通和航空航天等领域有着广阔的应用前景。然而镁合金仍存在强度低、延展性差和耐蚀性差等缺点,改善镁合金的强塑性已成为拓宽镁合金在工业应用的中的首要问题。本文利用超声辅助半固态搅拌法成功制备了TiC纳米颗粒增强低合金化Mg–2Zn–0.8Sr–0.2Ca基复合材料,并且对铸态复合材料进行热挤压变形,系统研究了挤压对其显微组织及力学性能的影响。结果表明,在较低的挤压温度或挤压速率下,复合材料动态再结晶的体积分数和再结晶晶粒尺寸有所降低。挤压条件为200°C, 0.1 mm/s时,复合材料中出现了晶粒尺寸约0.3 µm的细晶组织。挤压后的复合材料呈现强基面织构,当挤压温度从200℃增加到240℃时,基面织构强度随之增加。挤压条件为200°C,0.1 mm/s时复合材料的抗拉强度达480.2 MPa,屈服强度为462 MPa。对其强化机制进行理论计算表明相比与其他强化机制,细晶强化对强度的贡献最大。通过分析三种挤压后的纳米复合材料断裂行为,表明其断裂方式为韧脆混合型断裂。
  • Research Article

    Effect of extrusion on the microstructure and mechanical properties of a low-alloyed Mg–2Zn–0.8Sr–0.2Ca matrix composite reinforced by TiC nano-particles

    + Author Affiliations
    • A low-alloyed Mg–2Zn–0.8Sr–0.2Ca matrix composite reinforced by TiC nano-particles was successfully prepared by semi-solid stirring under the assistance of ultrasonic, and then the as-cast composite was hot extruded. The results indicated that the volume fraction of dynamical recrystallization and the recrystallized grain size have a certain decline at lower extrusion temperature or rate. The finest grain size of ~0.30 µm is obtained in the sample extruded at 200°C and 0.1 mm/s. The as-extruded sample displays a strong basal texture intensity, and the basal texture intensity increases to 5.937 mud while the extrusion temperature increases from 200 to 240°C. The ultra-high mechanical properties (ultimate tensile strength of 480.2 MPa, yield strength of 462 MPa) are obtained after extrusion at 200°C with a rate of 0.1 mm/s. Among all strengthening mechanisms for the present composite, the grain refinement contributes the most to the increase in strength. A mixture of cleavage facets and dimples were observed in the fracture surfaces of three as-extruded nanocomposites, which explain a mix of brittle-ductile fracture way of the samples.
    • loading
    • [1]
      J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnes. Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
      [2]
      H.C. Pan, R. Kang, J.R. Li, H.B. Xie, Z.R. Zeng, Q.Y. Huang, C.L. Yang, Y.P. Ren, and G.W. Qin, Mechanistic investigation of a low-alloy Mg–Ca-based extrusion alloy with high strength–ductility synergy, Acta Mater., 186(2020), p. 278. doi: 10.1016/j.actamat.2020.01.017
      [3]
      X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, and H.Y. Wang, What is going on in magnesium alloys?, J. Mater. Sci. Technol., 34(2018), No. 2, p. 245. doi: 10.1016/j.jmst.2017.07.019
      [4]
      G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567. doi: 10.1007/s12613-020-2216-8
      [5]
      M. Shahin, K. Munir, C.E. Wen, and Y.C. Li, Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives, Acta Biomater., 96(2019), p. 1. doi: 10.1016/j.actbio.2019.06.007
      [6]
      K.B. Nie, Z.H. Zhu, P. Munroe, K.K. Deng, and J.G. Han, Effect of extrusion speed on mixed grain microstructure and tensile properties of a Mg–2.9Zn–1.1Ca–0.5Mn nanocomposite reinforced by a low mass fraction of TiCp, Mater. Sci. Eng. A, 796(2020), art. No. 140223. doi: 10.1016/j.msea.2020.140223
      [7]
      H.Y. Jeong, B. Kim, S.G. Kim, H.J. Kim, and S.S. Park, Effect of Ce addition on the microstructure and tensile properties of extruded Mg–Zn–Zr alloys, Mater. Sci. Eng. A, 612(2014), p. 217. doi: 10.1016/j.msea.2014.06.054
      [8]
      C.J. Bettles, M.A. Gibson, and K. Venkatesan, Enhanced age-hardening behaviour in Mg–4 wt.% Zn micro-alloyed with Ca, Scripta Mater., 51(2004), No. 3, p. 193. doi: 10.1016/j.scriptamat.2004.04.020
      [9]
      R. Alizadeh, J.Y. Wang, and J. LLorca, Precipitate strengthening of pyramidal slip in Mg–Zn alloys, Mater. Sci. Eng. A, 804(2021), art. No. 140697. doi: 10.1016/j.msea.2020.140697
      [10]
      T. Nakata, T. Mezaki, R. Ajima, C. Xu, K. Oh-Ishi, K. Shimizu, S. Hanaki, T.T. Sasaki, K. Hono, and S. Kamado, High-speed extrusion of heat-treatable Mg–Al–Ca–Mn dilute alloy, Scripta Mater., 101(2015), p. 28. doi: 10.1016/j.scriptamat.2015.01.010
      [11]
      X. Meng, Z.T. Jiang, S.J. Zhu, and S.K. Guan, Effects of Sr addition on microstructure, mechanical and corrosion properties of biodegradable Mg–Zn–Ca alloy, J. Alloys Compd., 838(2020), art. No. 155611. doi: 10.1016/j.jallcom.2020.155611
      [12]
      J.Y. Wang, Y.W. Chen, Z. Chen, J. Llorca, and X.Q. Zeng, Deformation mechanisms of Mg–Ca–Zn alloys studied by means of micropillar compression tests, Acta Mater., 217(2021), art. No. 117151. doi: 10.1016/j.actamat.2021.117151
      [13]
      Y. Liu, N. Li, M. Arul Kumar, S. Pathak, J. Wang, R.J. McCabe, N.A. Mara, and C.N. Tomé, Experimentally quantifying critical stresses associated with basal slip and twinning in magnesium using micropillars, Acta Mater., 135(2017), p. 411. doi: 10.1016/j.actamat.2017.06.008
      [14]
      X.F. Sun, C.J. Wang, K.K. Deng, K.B. Nie, X.C. Zhang, and X.Y. Xiao, High strength SiCp/AZ91 composite assisted by dynamic precipitated Mg17Al12 phase, J. Alloys Compd., 732(2018), p. 328. doi: 10.1016/j.jallcom.2017.10.164
      [15]
      K.K. Deng, J.Y. Shi, C.J. Wang, X.J. Wang, Y.W. Wu, K.B. Nie, and K. Wu, Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite, Compos. A: Appl. Sci. Manuf., 43(2012), No. 8, p. 1280. doi: 10.1016/j.compositesa.2012.03.007
      [16]
      K.B. Nie, X.J. Wang, K.K. Deng, X.S. Hu, and K. Wu, Magnesium matrix composite reinforced by nanoparticles – A review, J. Magnes. Alloys, 9(2021), No. 1, p. 57. doi: 10.1016/j.jma.2020.08.018
      [17]
      C.P. Li, Z.G. Wang, H.Y. Wang, X. Zhu, M. Wu, and Q.C. Jiang, Fabrication of nano-SiC particulate reinforced Mg–8Al–1Sn composites by powder metallurgy combined with hot extrusion, J. Mater. Eng. Perform., 25(2016), No. 11, p. 5049. doi: 10.1007/s11665-016-2326-7
      [18]
      H. Yu, H.P. Zhou, Y. Sun, L.L. Ren, Z.P. Wan, and L.X. Hu, Microstructures and mechanical properties of ultrafine-grained Ti/AZ31 magnesium matrix composite prepared by powder metallurgy, Adv. Powder Technol., 29(2018), No. 12, p. 3241. doi: 10.1016/j.apt.2018.09.001
      [19]
      G.K. Meenashisundaram and M. Gupta, Low volume fraction nano-titanium particulates for improving the mechanical response of pure magnesium, J. Alloys Compd., 593(2014), p. 176. doi: 10.1016/j.jallcom.2013.12.157
      [20]
      X.J. Wang, K. Wu, H.F. Zhang, W.X. Huang, H. Chang, W.M. Gan, M.Y. Zheng, and D.L. Peng, Effect of hot extrusion on the microstructure of a particulate reinforced magnesium matrix composite, Mater. Sci. Eng. A, 465(2007), No. 1-2, p. 78. doi: 10.1016/j.msea.2007.03.077
      [21]
      Y.C. Guo, K.B. Nie, X.K. Kang, K.K. Deng, J.G. Han, and Z.H. Zhu, Achieving high-strength magnesium matrix nanocomposite through synergistical effect of external hybrid (SiC+TiC) nanoparticles and dynamic precipitated phase, J. Alloys Compd., 771(2019), p. 847. doi: 10.1016/j.jallcom.2018.09.030
      [22]
      F. Samadpour, G. Faraji, and A. Siahsarani, Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 669. doi: 10.1007/s12613-019-1921-7
      [23]
      Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
      [24]
      X.G. Qiao, T. Ying, M.Y. Zheng, E.D. Wei, K. Wu, X.S. Hu, W.M. Gan, H.G. Brokmeier, and I.S. Golovin, Microstructure evolution and mechanical properties of nano-SiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP), Mater. Charact., 121(2016), p. 222. doi: 10.1016/j.matchar.2016.10.003
      [25]
      X.Y. Tao, J. Du, Y.C. Yang, Y.P. Li, Y. Xia, Y.P. Gan, H. Huang, W.K. Zhang, and X.D. Li, TiC nanorods derived from cotton fibers: Chloride-assisted VLS growth, structure, and mechanical properties, Cryst. Growth Des., 11(2011), No. 10, p. 4422. doi: 10.1021/cg2005979
      [26]
      M.J. Shen, W.F. Ying, X.J. Wang, M.F. Zhang, and K. Wu, Development of high performance magnesium matrix nanocomposites using nano-SiC particulates as reinforcement, J. Mater. Eng. Perform., 24(2015), No. 10, p. 3798. doi: 10.1007/s11665-015-1707-7
      [27]
      M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, Adding TiC nanoparticles to magnesium alloy ZK60A for strength/ductility enhancement, J. Nanomater., 2011(2011), art. No. 642980.
      [28]
      M. Rashad, F.S. Pan, W. Guo, H. Lin, M. Asif, and M. Irfan, Effect of alumina and silicon carbide hybrid reinforcements on tensile, compressive and microhardness behavior of Mg–3Al–1Zn alloy, Mater. Charact., 106(2015), p. 382. doi: 10.1016/j.matchar.2015.06.033
      [29]
      S.S. Shuai, E.Y. Guo, J. Wang, A.B. Phillion, T. Jing, Z.M. Ren, and P.D. Lee, Synchrotron tomographic quantification of the influence of Zn concentration on dendritic growth in Mg–Zn alloys, Acta Mater., 156(2018), p. 287. doi: 10.1016/j.actamat.2018.06.026
      [30]
      K.B. Nie, Z.H. Zhu, P. Munroe, K.K. Deng, and J.G. Han, The effect of Zn/Ca ratio on the microstructure, texture and mechanical properties of dilute Mg–Zn–Ca–Mn alloys that exhibit superior strength, J. Mater. Sci., 55(2020), No. 8, p. 3588. doi: 10.1007/s10853-019-04174-4
      [31]
      K.B. Nie, Z.H. Zhu, P. Munroe, K.K. Deng, and J.G. Han, Microstructure, tensile properties and work hardening behavior of an extruded Mg–Zn–Ca–Mn magnesium alloy, Acta Metall. Sin. Engl. Lett., 33(2020), No. 7, p. 922. doi: 10.1007/s40195-020-01061-9
      [32]
      B.C. Zhou, S.L. Shang, Y. Wang, and Z.K. Liu, Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study, Acta Mater., 103(2016), p. 573. doi: 10.1016/j.actamat.2015.10.010
      [33]
      Y.N. Wang and J.C. Huang, Texture analysis in hexagonal materials, Mater. Chem. Phys., 81(2003), No. 1, p. 11. doi: 10.1016/S0254-0584(03)00168-8
      [34]
      A. Yang, K.B. Nie, K.K. Deng, and Y.N. Li, Improved tensile properties of low-temperature and low-speed extruded Mg–χAl–(4.8−χ)Ca–0.6Mn alloys, J. Mater. Res. Technol., 9(2020), No. 5, p. 11717. doi: 10.1016/j.jmrt.2020.08.035
      [35]
      Y.Z. Du, X.G. Qiao, M.Y. Zheng, K. Wu, and S.W. Xu, Development of high-strength, low-cost wrought Mg–2.5 mass% Zn alloy through micro-alloying with Ca and La, Mater. Des., 85(2015), p. 549. doi: 10.1016/j.matdes.2015.07.029
      [36]
      D.K. Guan, W.M. Rainforth, L. Ma, B. Wynne, and J.H. Gao, Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy, Acta Mater., 126(2017), p. 132. doi: 10.1016/j.actamat.2016.12.058
      [37]
      M. Habibnejad-Korayem, R. Mahmudi, and W.J. Poole, Work hardening behavior of Mg-based nano-composites strengthened by Al2O3 nano-particles, Mater. Sci. Eng. A, 567(2013), p. 89. doi: 10.1016/j.msea.2012.12.083
      [38]
      G.K. Meenashisundaram and M. Gupta, Synthesis and characterization of high performance low volume fraction TiC reinforced Mg nanocomposites targeting biocompatible/structural applications, Mater. Sci. Eng. A, 627(2015), p. 306. doi: 10.1016/j.msea.2015.01.007
      [39]
      K.B. Nie, X.J. Wang, K. Wu, L. Xu, M.Y. Zheng, and X.S. Hu, Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration, J. Alloys Compd., 509(2011), No. 35, p. 8664. doi: 10.1016/j.jallcom.2011.06.091
      [40]
      W.J. Li, K.K. Deng, X. Zhang, C.J. Wang, J.W. Kang, K.B. Nie, and W. Liang, Microstructures, tensile properties and work hardening behavior of SiCp/Mg–Zn–Ca composites, J. Alloys Compd., 695(2017), p. 2215. doi: 10.1016/j.jallcom.2016.11.070
      [41]
      S.J. Shang, K.K. Deng, K.B. Nie, J.C. Li, S.S. Zhou, F.J. Xu, and J.F. Fan, Microstructure and mechanical properties of SiCp/Mg–Al–Zn composites containing Mg17Al12 phases processed by low-speed extrusion, Mater. Sci. Eng. A, 610(2014), p. 243. doi: 10.1016/j.msea.2014.05.062
      [42]
      X. Zhang, K.K. Deng, W.J. Li, H.X. Wang, K.B. Nie, F.J. Xu, and W. Liang, Microstructure and mechanical properties of Mg–Al–Ca alloy influenced by SiCp size, Mater. Sci. Eng. A, 647(2015), p. 15. doi: 10.1016/j.msea.2015.08.087
      [43]
      K.B. Nie, Y.C. Guo, K.K. Deng, and X.K. Kang, High strength TiCp/Mg–Zn–Ca magnesium matrix nanocomposites with improved formability at low temperature, J. Alloys Compd., 792(2019), p. 267. doi: 10.1016/j.jallcom.2019.04.028
      [44]
      X.J. Wang, K.B. Nie, X.S. Hu, Y.Q. Wang, X.J. Sa, and K. Wu, Effect of extrusion temperatures on microstructure and mechanical properties of SiCp/Mg–Zn–Ca composite, J. Alloys Compd., 532(2012), p. 78. doi: 10.1016/j.jallcom.2012.04.023
      [45]
      J.W. Kang, X.F. Sun, K.K. Deng, F.J. Xu, X. Zhang, and Y. Bai, High strength Mg–9Al serial alloy processed by slow extrusion, Mater. Sci. Eng. A, 697(2017), p. 211. doi: 10.1016/j.msea.2017.05.017
      [46]
      A. Sanaty-Zadeh, Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect, Mater. Sci. Eng. A, 531(2012), p. 112. doi: 10.1016/j.msea.2011.10.043
      [47]
      K.B. Nie, K.K. Deng, X.J. Wang, T. Wang, and K. Wu, Influence of SiC nanoparticles addition on the microstructural evolution and mechanical properties of AZ91 alloy during isothermal multidirectional forging, Mater. Charact., 124(2017), p. 14. doi: 10.1016/j.matchar.2016.12.006
      [48]
      K.B. Nie, Z.H. Zhu, K.K. Deng, and J.G. Han, Effect of extrusion temperature on microstructure and mechanical properties of a low-alloying and ultra-high strength Mg–Zn–Ca–Mn matrix composite containing trace TiC nanoparticles, J. Magnes. Alloys, 8(2020), No. 3, p. 676. doi: 10.1016/j.jma.2020.04.006
      [49]
      Y.Z. Du, X.G. Qiao, M.Y. Zheng, K. Wu, and S.W. Xu, The microstructure, texture and mechanical properties of extruded Mg–5.3Zn–0.2Ca–0.5Ce (wt%) alloy, Mater. Sci. Eng. A, 620(2015), p. 164. doi: 10.1016/j.msea.2014.10.028
      [50]
      M. Habibnejad-Korayem, R. Mahmudi, and W.J. Poole, Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles, Mater. Sci. Eng. A, 519(2009), No. 1-2, p. 198. doi: 10.1016/j.msea.2009.05.001
      [51]
      K.B. Nie, J.G. Han, K.K. Deng, and Z.H. Zhu, Simultaneous improvements in tensile strength and elongation of a Mg–2Zn–0.8Sr–0.2Ca alloy by a combination of microalloying and low content of TiC nanoparticles, Mater. Lett., 260(2020), art. No. 126951. doi: 10.1016/j.matlet.2019.126951

    Catalog


    • /

      返回文章
      返回