留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 2
Feb.  2023

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  624
  • HTML全文浏览量:  304
  • PDF下载量:  80
  • 被引次数: 0
Yushuo Li, Yanwu Dong, Zhouhua Jiang, Qingfei Tang, Shuyang Du, and Zhiwen Hou, Influence of rare earth Ce on hot deformation behavior of as-cast Mn18Cr18N high nitrogen austenitic stainless steel, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 324-334. https://doi.org/10.1007/s12613-021-2355-6
Cite this article as:
Yushuo Li, Yanwu Dong, Zhouhua Jiang, Qingfei Tang, Shuyang Du, and Zhiwen Hou, Influence of rare earth Ce on hot deformation behavior of as-cast Mn18Cr18N high nitrogen austenitic stainless steel, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 324-334. https://doi.org/10.1007/s12613-021-2355-6
引用本文 PDF XML SpringerLink
研究论文

稀土铈对铸态Mn18Cr18N高氮奥氏体不锈钢热变形行为的影响

  • 通讯作者:

    董艳伍    E-mail: dongyw@smm.neu.edu.cn

    姜周华    E-mail: jiangzh@smm.neu.edu.cn

文章亮点

  • (1) 系统研究了Ce元素对铸态Mn18Cr18N高氮奥氏体不锈钢热变形行为的影响。
  • (2) 阐述了Ce元素对Mn18Cr18N钢夹杂物的改性和改性前后热变形行为的差异。
  • (3) 阐述了Ce元素偏聚对Mn18Cr18N钢铸态组织和热变形组织的影响。
  • 通过热压缩试验研究了Mn18Cr18N和Mn18Cr18N+Ce高氮奥氏体不锈钢在1173–1473 K和0.01–1 s–1下的热变形行为。并通过含Ce夹杂物和Ce元素偏析两个方面分析了Ce元素对合金热变形行为的影响机理。结果表明,添加Ce元素后,大尺寸、有棱角、硬且脆的夹杂物(TiN–Al2O3、TiN和Al2O3)可被变质为细小弥散的含Ce夹杂物(Ce–Al–O–S和TiN–Ce–Al–O–S)。在凝固过程中,含Ce夹杂物可作为非均匀形核点细化铸态晶粒。在热变形过程中,含Ce夹杂物可以抑制位错运动和晶界迁移,诱导动态再结晶(DRX)形核,避免显微裂纹和孔隙的形成和扩展。此外,在凝固过程中,Ce原子在固液界面前沿富集,导致成分过冷并细化二次枝晶。类似地,在热变形过程中,Ce原子倾向于在DRX晶粒的边界处偏析并抑制晶粒的生长。在含Ce夹杂物和Ce元素偏析的协同作用下,虽然合金的热变形抗力和热变形活化能升高,但更容易发生DRX且DRX晶粒尺寸明显细化,还可以缓解热变形开裂问题。最后,测量了样品的显微硬度。结果表明,与铸态试样相比,热变形试样的显微硬度显著提高,并且随着DRX程度的增加,显微硬度不断降低。此外,Ce元素也可以通过影响铸态组织和热变形组织来影响合金的显微硬度。
  • Research Article

    Influence of rare earth Ce on hot deformation behavior of as-cast Mn18Cr18N high nitrogen austenitic stainless steel

    + Author Affiliations
    • The hot deformation behavior of Mn18Cr18N and Mn18Cr18N+Ce high nitrogen austenitic stainless steels at 1173–1473 K and 0.01–1 s–1 were investigated by thermal compression tests. The influence mechanism of Ce on the hot deformation behavior was analyzed by Ce-containing inclusions and segregation of Ce. The results show that after the addition of Ce, large, angular, hard, and brittle inclusions (TiN–Al2O3, TiN, and Al2O3) can be modified to fine and dispersed Ce-containing inclusions (Ce–Al–O–S and TiN–Ce–Al–O–S). During the solidification, Ce-containing inclusions can be used as heterogeneous nucleation particles to refine as-cast grains. During the hot deformation, Ce-containing inclusions can pin dislocation movement and grain boundary migration, induce dynamic recrystallization (DRX) nucleation, and avoid the formation and propagation of micro cracks and gaps. In addition, during the solidification, Ce atoms enrich at the front of solid–liquid interface, resulting in composition supercooling and refining the secondary dendrites. Similarly, during the hot deformation, Ce atoms tend to segregate at the boundaries of DRX grains, inhibiting the growth of grains. Under the synergistic effect of Ce-containing inclusions and Ce segregation, although the hot deformation resistance and hot deformation activation energy are improved, DRX is more likely to occur and the size of DRX grains is significantly refined, and the problem of hot deformation cracking can be alleviated. Finally, the microhardness of the samples was measured. The results show that compared with as-cast samples, the microhardness of hot-deformed samples increases significantly, and with the increase of DRX degree, the microhardness decreases continuously. In addition, Ce can affect the microhardness of Mn18Cr18N steel by affecting as-cast and hot deformation microstructures.
    • loading
    • Supplementary Information-s12613-021-2355-6.docx
    • [1]
      C.H. Gao, T.L. Ren, and M. Liu, Low-cycle fatigue characteristics of Cr18Mn18N0.6 austenitic steel under strain controlled condition at 100°C, Int. J. Fatigue, 118(2019), p. 35. doi: 10.1016/j.ijfatigue.2018.08.038
      [2]
      H. Teuber, J. Barnikel, M. Dankert, W. David, A. Ghicov, and S. Voss, Development of a new high-strength steel for low pressure steam turbine end-stage blades, J. Eng. Gas Turbines Power, 141(2019), No. 1, art. No. 011021. doi: 10.1115/1.4040849
      [3]
      C.Z. Zhao, S.S. Wei, Y.L. Gao, and Y.H. Wang, Progress of heat-resistant steel for supercritical and ultra-supercritical steam turbine, J. Iron Steel Res., 19(2007), No. 9, p. 1.
      [4]
      W.W. He, S.L. Sun, J.S. Liu, and H.G. Guo, Static recrystallization microstructure and model of Mn18Cr18N retaining rings steel, Mater. Sci. Technol., 22(2014), No. 6, p. 17.
      [5]
      W.W. He, J.S. Liu, Y.F. Guo, H.Q. Chen, and H.G. Guo, Microstructure evolution of multi-heats forging of Mn18Cr18N retaining ring steel and numerical simulation, J. Plast. Eng., 17(2010), No. 2, p. 45.
      [6]
      F. Li, H.Y. Zhang, W.W. He, H.Q. Chen, and H.G. Guo, Compression and tensile consecutive deformation behavior of Mn18Cr18N austenite stainless steel, Acta Metall. Sin., 52(2016), No. 8, p. 956.
      [7]
      F.M. Qin, H. Zhu, Z.X. Wang, X.D. Zhao, W.W. He, and H.Q. Chen, Dislocation and twinning mechanisms for dynamic recrystallization of as-cast Mn18Cr18N steel, Mater. Sci. Eng. A, 684(2017), p. 634. doi: 10.1016/j.msea.2016.12.095
      [8]
      D.L. Zhu, M. Zhang, and Y. Wang, Electron backscattered diffraction study of microstructural evolution during isothermal deformation of high-N Mn18Cr18 alloy, Metall. Mater. Trans. B, 50(2019), No. 4, p. 1662. doi: 10.1007/s11663-019-01606-z
      [9]
      Z.H. Wang, S.H. Sun, B. Wang, Z.P. Shi, R.H. Zhang, and W.T. Fu, Effect of grain size on dynamic recrystallization and hot-ductility behaviors in high-nitrogen CrMn austenitic stainless steel, Metall. Mater. Trans. A, 45(2014), No. 8, p. 3631. doi: 10.1007/s11661-014-2290-5
      [10]
      J.Z. Gao, P.X. Fu, H.W. Liu, and D.Z. Li, Effects of rare earth on the microstructure and impact toughness of H13 steel, Metals, 5(2015), No. 1, p. 383. doi: 10.3390/met5010383
      [11]
      F.X. Yin, L. Wang, Z.X. Xiao, J.H. Feng, and L. Zhao, Effect of titanium and rare earth microalloying on microsegregation, eutectic carbides of M2 high speed steel during ESR process, J. Rare Earths, 38(2020), No. 9, p. 1030. doi: 10.1016/j.jre.2019.09.009
      [12]
      Y. Huang, W.N. Liu, A.M. Zhao, J.K. Han, Z.G. Wang, and H.X. Yin, Effect of Mo content on the thermal stability of Ti–Mo-bearing ferritic steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 412. doi: 10.1007/s12613-020-2045-9
      [13]
      B. Šuler, J. Burja, and J. Medved, Modification of non-metallic inclusions with rare-earth metals in 50CrMoV13-1 steel, Mater. Tehnol., 53(2019), No. 3, p. 441. doi: 10.17222/mit.2018.271
      [14]
      H.Q. Hu, X.Y. Zhong, and H. Li, Influence of Ce on crystal morphology of austenite and dendritic segregation of Mn in high-Mn steel, Acta Metall. Sin., 20(1984), No. 4, p. 247.
      [15]
      N. Stanford, M.D. Callaghan, and B.D. Jong, The effect of rare earth elements on the behaviour of magnesium-based alloys: Part 1—Hot deformation behaviour, Mater. Sci. Eng. A, 565(2013), p. 459. doi: 10.1016/j.msea.2012.12.023
      [16]
      H.H. Yan, Y. Hu, and D.W. Zhao, Influence of rare earth on dynamic recrystallization behavior of as-cast 30Mn steel, Adv. Mater. Sci. Eng., 2018(2018), p. 8423415. doi: 10.1155/2018/8423415
      [17]
      A. Łukaszek-Sołek, T. Śleboda, J. Krawczyk, S. Bednarek, and M. Wojtaszek, Characterization of the workability of Ni–Fe–Mo alloy by complex processing maps, J. Alloys Compd., 797(2019), p. 174. doi: 10.1016/j.jallcom.2019.05.094
      [18]
      L.W. Xu, H.B. Li, Z.H. Jiang, M.H. Cai, W.C. Jiao, H. Feng, S.C. Zhang, and P.C. Lu, Hot deformation behavior of P550 steels for nonmagnetic drilling collars, Steel Res. Int., 91(2020), No. 8, art. No. 2000035. doi: 10.1002/srin.202000035
      [19]
      Q.Y. Zang, Y.F. Jin, T. Zhang, and Y.T. Yang, Effect of yttrium addition on microstructure, mechanical and corrosion properties of 20Cr13 martensitic stainless steel, J. Iron Steel Res. Int., 27(2020), No. 4, p. 451. doi: 10.1007/s42243-020-00377-1
      [20]
      X.Q. Pan, J. Yang, J. Park, and H. Ono, Distribution characteristics of inclusions along with the surface sliver defect on the exposed panel of automobile: A quantitative electrolysis method, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1489. doi: 10.1007/s12613-020-1973-8
      [21]
      C. Gu, W.Q. Liu, J.H. Lian, and Y.P. Bao, In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 826. doi: 10.1007/s12613-020-2223-9
      [22]
      J.L. Lei, Z.L. Xue, H.Y. Zhu, and Y.D. Jiang, Research progress on non-metallic inclusion in tire cord steel for radial tire, J. Iron Steel Res., 30(2018), No. 11, p. 847.
      [23]
      A.L.V.D. Costa e Silva, The effects of non-metallic inclusions on properties relevant to the performance of steel in structural and mechanical applications, J. Mater. Res. Technol., 8(2019), No. 2, p. 2408. doi: 10.1016/j.jmrt.2019.01.009
      [24]
      B.L. Bramfitt, The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron, Metall. Trans., 1(1970), No. 7, p. 1987. doi: 10.1007/BF02642799
      [25]
      M. Li, J.M. Li, D. Qiu, Q. Zheng, G. Wang, and M.X. Zhang, Crystallographic study of grain refinement in low and medium carbon steels, Philos. Mag., 96(2016), No. 15, p. 1556. doi: 10.1080/14786435.2016.1171413
      [26]
      Y.C. Yu, S.H. Zhang, H. Li, and S.B. Wang, Effects of rare earth lanthanum on the solidification structure and hot ductility of Fe–43Ni expansion alloy, High Temp. Mater. Process., 37(2018), No. 3, p. 261. doi: 10.1515/htmp-2016-0157
      [27]
      M. El Wahabi, L. Gavard, F. Montheillet, J.M. Cabrera, and J.M. Prado, Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels, Acta Mater., 53(2005), No. 17, p. 4605. doi: 10.1016/j.actamat.2005.06.020
      [28]
      N. Choi, N. Park, J.K. Kim, A.V. Karasev, P.G. Jönsson, and J.H. Park, Influence of manufacturing conditions on inclusion characteristics and mechanical properties of FeCrNiMnCo alloy, Metals, 10(2020), No. 10, art. No. 1286. doi: 10.3390/met10101286
      [29]
      N. Nayan, S.V.S.N. Murty, S. Chhangani, A. Prakash, M.J.N.V. Prasad, and I. Samajdar, Effect of temperature and strain rate on hot deformation behavior and microstructure of Al–Cu–Li alloy, J. Alloys Compd., 723(2017), p. 548. doi: 10.1016/j.jallcom.2017.06.165
      [30]
      S.M. Lv, C.L. Jia, X.B. He, Z.P. Wan, Y. Li, and X.H. Qu, Hot deformation characteristics and dynamic recrystallization mechanisms of a novel nickel-based superalloy, Adv. Eng. Mater., 22(2020), No. 12, art. No. 2000622. doi: 10.1002/adem.202000622
      [31]
      R. Schmid-Fetzer and A. Kozlov, Thermodynamic aspects of grain growth restriction in multicomponent alloy solidification, Acta Mater., 59(2011), No. 15, p. 6133. doi: 10.1016/j.actamat.2011.06.026
      [32]
      J.B. Zhang, Y.C. Zhang, F. Zhang, D.X. Cui, Y.M. Zhao, H.X. Wu, X.Z. Wang, Q. Zhou, and H.F. Wang, Dendrite growth and grain “coarsening” in an undercooled CoNi equiatomic alloy, J. Alloys Compd., 816(2020), art. No. 152529. doi: 10.1016/j.jallcom.2019.152529
      [33]
      Q.X. Yang, A. Wang, M. Gao, H.Q. Wu, and T.B. Guo, Effect of rare earth elements on austenite growth dynamics of steel 9Cr2Mo, J. Iron Steel Res. Int., 3(1996), No. 1, p. 43.
      [34]
      H. Wang, Y.P. Bao, M. Zhao, M. Wang, X.M. Yuan, and S. Gao, Effect of Ce on the cleanliness, microstructure and mechanical properties of high strength low alloy steel Q690E in industrial production process, Int. J. Miner. Metall. Mater., 26(2019), No. 11, p. 1372. doi: 10.1007/s12613-019-1871-0

    Catalog


    • /

      返回文章
      返回