留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(7)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  223
  • HTML全文浏览量:  105
  • PDF下载量:  25
  • 被引次数: 0
Dong Zhao, Feng Ye, Bin-bin Liu, Hao-yang Du, Yaakov B. Unigovski, Emmanuel M. Gutman, and Roni Shneck, Enhancing the formability of FeSi6.5 steel by the anodic polarization, Int. J. Miner. Metall. Mater.,(2022). https://doi.org/10.1007/s12613-021-2356-5
Cite this article as:
Dong Zhao, Feng Ye, Bin-bin Liu, Hao-yang Du, Yaakov B. Unigovski, Emmanuel M. Gutman, and Roni Shneck, Enhancing the formability of FeSi6.5 steel by the anodic polarization, Int. J. Miner. Metall. Mater.,(2022). https://doi.org/10.1007/s12613-021-2356-5
引用本文 PDF XML SpringerLink
研究论文

基于阳极极化技术改善FeSi6.5钢的成形性能

  • 通讯作者:

    叶丰    E-mail: yefeng@skl.ustb.edu.cn

  • FeSi6.5钢是一种优异的软磁材料,然而较低的塑性使其加工成薄板或细丝非常困难。本文提出了一种改善FeSi6.5钢塑性和成形能力的新方法。在FeSi6.5钢受力变形时,对其实施阳极极化,利用化学力学效应促进其塑性变形。本文对在硫酸溶液中拉伸和拉拔变形的试样施以电流密度为0–40 mA/cm2的阳极极化电流,研究了阳极极化对FeSi6.5钢的室温塑性变形行为和成形性能的影响。结果表明,阳极极化后,FeSi6.5钢的塑性和成形性显著提高。经受阳极极化的试样的塑性伸长率为4.4%–7%,但在空气中仅为2.7%。与在去离子水拉拔相比,阳极极化下的拉拔变形抗力降低了12.5%–26%。软化效应主要归因于表面原子溶解降低FeSi6.5钢的加工硬化程度。采用Hollomon方程和Voce关系,结合Kocks–Mecking(K–M)方法,分析了FeSi6.5钢丝在阳极极化条件下的加工硬化机理。这些数据支持表面原子溶解促进位错滑移的观点。采用电化学法制备了FeSi6.5冷拔钢丝,五道次拉拔后钢丝表面光滑,延展性好,无裂纹,总截面积减少88%。阳极极化辅助拉拔是一种很有前途的加工硬脆金属材料的技术。
  • Research Article

    Enhancing the formability of FeSi6.5 steel by the anodic polarization

    + Author Affiliations
    • The effect of anodic polarization on the plastic deformation behavior and formability of FeSi6.5 steel at room temperature was experimentally investigated through uniaxial tensile and drawing of wire specimen in sulfuric acid solution with current densities of 0–40 mA/cm2. The formability of the FeSi6.5 steel was significantly improved after the anodic polarization. The plastic elongation of the specimen as an anode in the electrochemical environment was 4.4%–7%, but 2.7% in the air. The drawing force under the anodic polarization decreased by 12.5%–26% compared to that in deionized water. The softening is mainly attributed to the relief in work hardening caused by surface atomic dissolution. The work hardening mechanism of the FeSi6.5 steel wires under anodic polarization condition was analyzed using Hollomon equation and Voce relation combined with the Kocks–Mecking approach. These data support the view that the surface atom dissolution facilitates dislocation slip. FeSi6.5 steel wires were obtained using electrochemical cold drawing and presented a smooth surface and good ductility without crack after five-pass drawing with a total cross-section area reduction of 88%. The drawing with the assistance of anodic polarization is a promising technology for processing hard and brittle metal materials.
    • loading
    • [1]
      M. Komatsubara, K. Sadahiro, O. Kondo, T. Takamiya, and A. Honda, Newly developed electrical steel for high-frequency use, J. Magn. Magn. Mater., 242-245(2002), p. 212. doi: 10.1016/S0304-8853(01)01164-7
      [2]
      H. Ninomiya, Y. Tanaka, A. Hiura, and Y. Takada, Magnetostriction and applications of 6.5% Si steel sheet, J. Appl. Phys., 69(1991), No. 8, p. 5358. doi: 10.1063/1.348028
      [3]
      Y.F. Liang, J.P. Lin, F. Ye, Y.J. Li, Y.L. Wang, and G.L. Chen, Microstructure and mechanical properties of rapidly quenched Fe–6.5 wt.% Si alloy, J. Alloys Compd., 504(2010), No. supplement1, p. S476. doi: 10.1016/j.jallcom.2010.03.075
      [4]
      Y.F. Liang, F. Ye, J.P. Lin, Y.L. Wang, and G.L. Chen, Effect of annealing temperature on magnetic properties of cold rolled high silicon steel thin sheet, J. Alloys Compd., 491(2010), No. 1-2, p. 268. doi: 10.1016/j.jallcom.2009.10.118
      [5]
      X.L. Wang, W.N. Zhang, Z.Y. Liu, H.Z. Li, and G.D. Wang, Improvement on room-temperature ductility of 6.5 wt.% Si steel by stress-relief annealing treatments after warm rolling, Mater. Charact., 122(2016), p. 206. doi: 10.1016/j.matchar.2016.11.006
      [6]
      H. Li, Y.F. Liang, W. Yang, F. Ye, J.P. Lin, and J.X. Xie, Disordering induced work softening of Fe–6.5 wt%Si alloy during warm deformation, Mater. Sci. Eng. A, 628(2015), p. 262. doi: 10.1016/j.msea.2015.01.058
      [7]
      X.L. Wang, H.Z. Li, W.N. Zhang, Z.Y. Liu, G.D. Wang, Z.H. Luo, and F.Q. Zhang, The work softening by deformation-induced disordering and cold rolling of 6.5 wt pct Si steel thin sheets, Metall. Mater. Trans. A, 47(2016), No. 9, p. 4659. doi: 10.1007/s11661-016-3613-5
      [8]
      E.M. Gutman, Mechanochemistry of Solid Surfaces, World Scientific Publishing, Singapore, 1994.
      [9]
      E.M. Gutman, Y. Unigovski, R. Shneck, F. Ye, and Y. Liang, Electrochemically enhanced surface plasticity of steels, Appl. Surf. Sci., 388(2016), p. 49. doi: 10.1016/j.apsusc.2016.04.071
      [10]
      R.W. Revie and H.H. Uhlig, Effect of applied potential and surface dissolution on the creep behavior of copper, Acta Metall., 22(1974), No. 5, p. 619. doi: 10.1016/0001-6160(74)90159-X
      [11]
      H.H. Uhlig, Effect of surface dissolution on plastic deformation of iron and steel, J. Electrochem. Soc., 123(1976), No. 11, p. 1699. doi: 10.1149/1.2132671
      [12]
      Y. Unigovski, Z. Keren, A. Eliezer, and E.M. Gutman, Creep behavior of pure magnesium and Mg–Al alloys in active environments, Mater. Sci. Eng. A, 398(2005), No. 1-2, p. 188. doi: 10.1016/j.msea.2005.03.017
      [13]
      Q.H. Wan and D.J. Quesnel, Effects of NaCl, pH, and potential on the static creep behavior of AA1100, Metall. Mater. Trans. A, 44(2013), No. 3, p. 1311. doi: 10.1007/s11661-012-1294-2
      [14]
      D. Zhao, B. Yu, B.B. Liu, and F. Ye, The softening effect during electrochemical drawing of AISI 1070 steel wire, Int. J. Mod. Phys. B, 34(2020), No. 1n03, art. No. 2040037. doi: 10.1142/S0217979220400378
      [15]
      D. Zhao, F. Ye, Y.B. Unigovski, E.M. Gutman, and R. Shneck, Enhanced corrosion resistance of hard steel wires produced by electrochemical cold drawing, J. Met.,Mater. Miner., 29(2019), No. 3, p. 10.
      [16]
      L. Li, T. Chen, S. Zhang, E.M. Gutman, Y. Unigovski, and F. Yan, Electrochemical cold drawing of Mg alloy bars, Mater. Sci. Technol., 33(2017), No. 2, p. 244. doi: 10.1080/02670836.2016.1187333
      [17]
      L.L. Li, T.J. Chen, S.Q. Zhang, and F.Y. Yan, Electrochemical cold drawing of in situ Mg2Sip/AM60B composite: A comparison with the AM60B alloy, J. Mater. Process. Technol., 240(2017), p. 33. doi: 10.1016/j.jmatprotec.2016.09.007
      [18]
      Y. Shao, L.M. Yu, Y.C. Liu, Z.Q. Ma, H.J. Li, and J.F. Wu, Hot deformation behaviors of a 9Cr oxide dispersion-strengthened steel and its microstructure characterization, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 597. doi: 10.1007/s12613-019-1768-y
      [19]
      D.C. Ludwigson, Modified stress-strain relation for FCC metals and alloys, Metall. Trans., 2(1971), No. 10, p. 2825. doi: 10.1007/BF02813258
      [20]
      E. Voce, The relationship between stress and strain for homogeneous deformations, J. Inst. Met., 74(1948), p. 537.
      [21]
      U.F. Kocks and H. Mecking, Physics and phenomenology of strain hardening: The FCC case, Prog. Mater. Sci., 48(2003), No. 3, p. 171. doi: 10.1016/S0079-6425(02)00003-8
      [22]
      C.L. Mao, C.X. Liu, L.M. Yu, H.J. Li, and Y.C. Liu, The correlation among microstructural parameter and dynamic strain aging (DSA) in influencing the mechanical properties of a reduced activated ferritic-martensitic (RAFM) steel, Mater. Sci. Eng. A, 739(2019), p. 90. doi: 10.1016/j.msea.2018.10.023
      [23]
      J.H. Hollomon, Tensile deformation, Trans. AIME, 162(1945), p. 268.
      [24]
      L.Y. Zhou, D. Zhang, and Y.Z. Liu, Influence of silicon on the microstructures, mechanical properties and stretch-flangeability of dual phase steels, Int. J. Miner. Metall. Mater., 21(2014), No. 8, p. 755. doi: 10.1007/s12613-014-0968-8
      [25]
      H.W. Swift, Plastic instability under plane stress, J. Mech. Phys. Solids, 1(1952), No. 1, p. 1. doi: 10.1016/0022-5096(52)90002-1
      [26]
      R. Kishore and T.K. Sinha, Analysis of the stress–strain curves of a modified 9Cr–1Mo steel by the voce equation, Metall. Mater. Trans. A, 27(1996), No. 10, p. 3340. doi: 10.1007/BF02663885
      [27]
      D.P.R. Palaparti, B.K. Choudhary, E. Isaac Samuel, V.S. Srinivasan, and M.D. Mathew, Influence of strain rate and temperature on tensile stress–strain and work hardening behaviour of 9Cr–1Mo ferritic steel, Mater. Sci. Eng. A, 538(2012), p. 110. doi: 10.1016/j.msea.2011.12.109
      [28]
      G. Angella, R. Donnini, M. Maldini, and D. Ripamonti, Combination between Voce formalism and improved Kocks–Mecking approach to model small strains of flow curves at high temperatures, Mater. Sci. Eng. A, 594(2014), p. 381. doi: 10.1016/j.msea.2013.11.088
      [29]
      G.X. Sun, Y. Zhang, S.C. Sun, J.J. Hu, Z.H. Jiang, C.T. Ji, and J.S. Lian, Plastic flow behavior and its relationship to tensile mechanical properties of high nitrogen nickel-free austenitic stainless steel, Mater. Sci. Eng. A, 662(2016), p. 432. doi: 10.1016/j.msea.2016.03.057
      [30]
      C. Girish Shastry, M.D. Mathew, K. Bhanu Sankara Rao, and S.L. Mannan, Analysis of elevated temperature flow and work hardening behaviour of service-exposed 2.25Cr–1Mo steel using Voce equation, Int. J. Press. Vessels Pip., 81(2004), No. 3, p. 297. doi: 10.1016/j.ijpvp.2003.11.016
      [31]
      G. Sainath, B.K. Choudhary, J. Christopher, E. Isaac Samuel, and M.D. Mathew, Applicability of Voce equation for tensile flow and work hardening behaviour of P92 ferritic steel, Int. J. Press. Vessels Pip., 132-133(2015), p. 1. doi: 10.1016/j.ijpvp.2015.05.004
      [32]
      W. Yang, H. Li, K. Yang, Y.F. Liang, J. Yang, and F. Ye, Hot drawn Fe–6.5 wt.%Si wires with good ductility, Mater. Sci. Eng. B, 186(2014), p. 79. doi: 10.1016/j.mseb.2014.03.013
      [33]
      Y. Estrin and H. Mecking, A unified phenomenological description of work hardening and creep based on one-parameter models, Acta Metall., 32(1984), No. 1, p. 57. doi: 10.1016/0001-6160(84)90202-5
      [34]
      J. Christopher, B.K. Choudhary, E. Isaac Samuel, V.S. Srinivasan, and M.D. Mathew, Tensile flow and work hardening behaviour of 9Cr–1Mo ferritic steel in the frame work of Voce relationship, Mater. Sci. Eng. A, 528(2011), No. 21, p. 6589. doi: 10.1016/j.msea.2011.05.026
      [35]
      P.J. Wang, L.W. Ma, X.Q. Cheng, and X.G. Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1112. doi: 10.1007/s12613-021-2308-0
      [36]
      J.H. Zhou, Y.F. Shen, and N. Jia, Strengthening mechanisms of reduced activation ferritic/martensitic steels: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 335. doi: 10.1007/s12613-020-2121-1
      [37]
      H.W. Zhang, Y.M. Zhao, Y.H. Wang, C.L. Zhang, and Y. Peng, On the microstructural evolution pattern toward nano–scale of an AISI 304 stainless steel during high strain rate surface deformation, J. Mater. Sci. Technol., 44(2020), p. 148. doi: 10.1016/j.jmst.2020.01.027

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

    • /

      返回文章
      返回