Cite this article as:

Dong Zhao, Feng Ye, Binbin Liu, Haoyang Du, Yaakov B. Unigovski, Emmanuel M. Gutman, and Roni Shneck, Enhancing the formability of FeSi6.5 steel by the anodic polarization, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp.2072-2078. https://dx.doi.org/10.1007/s12613-021-2356-5
Dong Zhao, Feng Ye, Binbin Liu, Haoyang Du, Yaakov B. Unigovski, Emmanuel M. Gutman, and Roni Shneck, Enhancing the formability of FeSi6.5 steel by the anodic polarization, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp.2072-2078. https://dx.doi.org/10.1007/s12613-021-2356-5
引用本文 PDF XML SpringerLink

基于阳极极化技术改善FeSi6.5钢的成形性能

摘要: FeSi6.5钢是一种优异的软磁材料,然而较低的塑性使其加工成薄板或细丝非常困难。本文提出了一种改善FeSi6.5钢塑性和成形能力的新方法。在FeSi6.5钢受力变形时,对其实施阳极极化,利用化学力学效应促进其塑性变形。本文对在硫酸溶液中拉伸和拉拔变形的试样施以电流密度为0–40 mA/cm2的阳极极化电流,研究了阳极极化对FeSi6.5钢的室温塑性变形行为和成形性能的影响。结果表明,阳极极化后,FeSi6.5钢的塑性和成形性显著提高。经受阳极极化的试样的塑性伸长率为4.4%–7%,但在空气中仅为2.7%。与在去离子水拉拔相比,阳极极化下的拉拔变形抗力降低了12.5%–26%。软化效应主要归因于表面原子溶解降低FeSi6.5钢的加工硬化程度。采用Hollomon方程和Voce关系,结合Kocks–Mecking(K–M)方法,分析了FeSi6.5钢丝在阳极极化条件下的加工硬化机理。这些数据支持表面原子溶解促进位错滑移的观点。采用电化学法制备了FeSi6.5冷拔钢丝,五道次拉拔后钢丝表面光滑,延展性好,无裂纹,总截面积减少88%。阳极极化辅助拉拔是一种很有前途的加工硬脆金属材料的技术。

 

Enhancing the formability of FeSi6.5 steel by the anodic polarization

Abstract: The effect of anodic polarization on the plastic deformation behavior and formability of FeSi6.5 steel at room temperature was experimentally investigated through uniaxial tensile and drawing of wire specimen in sulfuric acid solution with current densities of 0–40 mA/cm2. The formability of the FeSi6.5 steel was significantly improved after the anodic polarization. The plastic elongation of the specimen as an anode in the electrochemical environment was 4.4%–7%, but 2.7% in the air. The drawing force under the anodic polarization decreased by 12.5%–26% compared to that in deionized water. The softening is mainly attributed to the relief in work hardening caused by surface atomic dissolution. The work hardening mechanism of the FeSi6.5 steel wires under anodic polarization condition was analyzed using Hollomon equation and Voce relation combined with the Kocks–Mecking approach. These data support the view that the surface atom dissolution facilitates dislocation slip. FeSi6.5 steel wires were obtained using electrochemical cold drawing and presented a smooth surface and good ductility without crack after five-pass drawing with a total cross-section area reduction of 88%. The drawing with the assistance of anodic polarization is a promising technology for processing hard and brittle metal materials.

 

/

返回文章
返回