Cite this article as: |
Ruqin Gao, Yingrui Huang, Enhui Wang, Xinmei Hou, Lu Pan, Guoting Li, and Bingtao Liu, Effect of heat treatment temperature of the glaze lager on the structure and the formaldehyde removal performance of an interior wall tile, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2079-2085. https://doi.org/10.1007/s12613-021-2359-2 |
高如琴
侯新梅 E-mail: houxinmeiustb@ustb.edu.cn
随着人们生活水平的提高,大量的石油产品及能够产生挥发性有机化合物的日用品、装饰品在装修中使用,室内空气质量受到严重影响,室内装修材料成为近年来的研究热点。本文旨在开发一种对室内甲醛去除效果好、使用方便、成本低廉的内墙材料。本文采用超细研磨、固相烧结和低温煅烧工艺,制备了不同釉层热处理温度的电气石/硅藻土基内墙砖,结合热重-差热分析、X-射线衍射和扫描电子显微镜等研究了材料的微观形貌与结构。以甲醛为目标降解物,考察釉层不同热处理温度下电气石/硅藻土基内墙砖对甲醛去除效果的影响。结果表明:随着釉层热处理温度的提高,硅藻土原始孔洞减少,比表面积和孔隙率下降,电气石结构发生变化。850°C时材料的表面结构稍有破坏,强度较高,对甲醛的去除效果较好,1 m3的环境舱内,300 min甲醛去除率达到73.6%;釉层热处理温度升温至950°C及以上,硅藻土和电气石结构遭到破坏,材料对甲醛的吸附和降解能力下降。
With the improvement of people’s living standards, a large number of petroleum products, daily necessities and decorations that can produce volatile organic compounds are used in decoration, which seriously affects the indoor air quality. Interior decoration materials have become a research hotspot in recent years. The purpose of this paper is to develop a kind of interior wall material with good indoor formaldehyde removal effect, easily using, and low cost. In this paper, combining different heat treatment temperatures of the glaze layer, tourmaline/diatomite-based interior wall tiles were prepared by ultrafine grinding, solid sintering, and low temperature calcination. The glaze layer under different heat treatment temperatures was characterized by thermogravimetric-differential thermal analysis, X-ray diffraction, and scanning electron microscope. The influences of heat treatment temperature on the microscopic morphology and structure of the glaze layer were analyzed. Taking formaldehyde as the target degradation product, the effects of tourmaline/diatomite-based interior wall tiles on the removal of formaldehyde under different heat treatment temperatures of the glaze layer were investigated. The results showed that with the increase in heat treatment temperature, the original pores of diatomite decreased, the specific surface area decreased, and the structure of tourmaline changed. At 850°C, the surface structure of the material was slightly damaged, the strength was increased, and the removal effect of formaldehyde was better. In a 1 m3 environmental chamber, the formaldehyde removal rate reached 73.6% in 300 min. When the temperature was increased to 950°C and above, diatomite and the structure of tourmaline were destroyed, and the ability of the material to adsorb and degrade formaldehyde decreased.
[1] |
A. Font, L. Soriano, L. Reig, M.M. Tashima, M.V. Borrachero, J. Monzó, and J. Payá, Use of residual diatomaceous earth as a silica source in geopolymer production, Mater. Lett., 223(2018), p. 10. doi: 10.1016/j.matlet.2018.04.010
|
[2] |
S.Y. Dai, L. Zhang, P.Y. Qi, L. Wang, and W.M. Ma, Preparation of molecular sieve and diatomite composite by hydrothermal method and its adsorption performance, J. Chin. Ceram. Soc., 48(2020), No. 7, p. 1122.
|
[3] |
R.Q. Gao, D. Liu, Y.R. Huang, and G.T. Li, Preparation of diatomite-modified wood ceramics and the adsorption kinetics of tetracycline, Ceram. Int., 46(2020), No. 12, p. 19799. doi: 10.1016/j.ceramint.2020.05.014
|
[4] |
E.L. Aksakal, I. Angin, and T. Oztas, Effects of diatomite on soil physical properties, CATENA, 88(2012), No. 1, p. 1. doi: 10.1016/j.catena.2011.08.004
|
[5] |
L. Han, F.L. Li, H.J. Zhang, L.H. Dong, Y.T. Pei, Q. Zhu, W.H. Wu, Q.L. Jia, and S.W. Zhang, Low-temperature preparation of porous diatomite ceramics via direct-gelcasting using melamine and boric acid as cross-linker and sintering agent, Ceram. Int., 45(2019), No. 18, p. 24469. doi: 10.1016/j.ceramint.2019.08.172
|
[6] |
Z.M. Sun, B.X. Liu, M.Z. Li, C.Q. Li, and S.L. Zheng, Carboxyl-rich carbon nanocomposite based on natural diatomite as adsorbent for efficient removal of Cr (VI), J. Mater. Res. Technol., 9(2020), No. 1, p. 948. doi: 10.1016/j.jmrt.2019.11.034
|
[7] |
L.F. Guo, S.Y. Zhang, J. Xie, D. Zhen, Y. Jin, K.Y. Wan, D.G. Zhuang, W.Q. Zheng, and X.B. Zhao, Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 515. doi: 10.1007/s12613-019-1900-z
|
[8] |
R.Q. Gao, Q. Sun, Z. Fang, G.T. Li, M.Z. Jia, and X.M. Hou, Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 73. doi: 10.1007/s12613-018-1548-0
|
[9] |
F. Akhtar, Y. Rehman, and L. Bergström, A study of the sintering of diatomaceous earth to produce porous ceramic monoliths with bimodal porosity and high strength, Powder Technol., 201(2010), No. 3, p. 253. doi: 10.1016/j.powtec.2010.04.004
|
[10] |
Y.H. Han, S. Qiu, H.Y. Zeng, F. Ma, J. Wang, Y.L. Qiu, and X.D. An, Short-term effects of tourmaline on nitrogen removals and microbial communities in a sequencing batch reactor at low temperatures, Int. J. Environ. Res. Public Health, 15(2018), No. 6, art. No. 1280. doi: 10.3390/ijerph15061280
|
[11] |
L.P. Hao, W.Y. Gao, S. Yan, M.H. Niu, G.S. Liu, and H.S. Hao, Preparation and characterization of porous ceramics with low-grade diatomite and oyster shell, Mater. Chem. Phys., 235(2019), art. No. 121741. doi: 10.1016/j.matchemphys.2019.121741
|
[12] |
C.H. Wang, Q. Chen, T.T. Guo, and Q. Li, Environmental effects and enhancement mechanism of graphene/tourmaline composites, J. Cleaner Prod., 262(2020), art. No. 121313. doi: 10.1016/j.jclepro.2020.121313
|
[13] |
L.D. Tijing, M.H. Yu, C.H. Kim, A. Amarjargal, Y.C. Lee, D.H. Lee, D.W. Kim, and C.S. Kim, Mitigation of scaling in heat exchangers by physical water treatment using zinc and tourmaline, Appl. Therm. Eng., 31(2011), No. 11-12, p. 2025. doi: 10.1016/j.applthermaleng.2011.03.011
|
[14] |
Y.N. Chen, S. Wang, Y.P. Li, Y.H. Liu, Y.R. Chen, Y.X. Wu, J.C. Zhang, H. Li, Z. Peng, R. Xu, and Z.P. Zeng, Adsorption of Pb(II) by tourmaline-montmorillonite composite in aqueous phase, J. Colloid Interface Sci., 575(2020), p. 367. doi: 10.1016/j.jcis.2020.04.110
|
[15] |
F. Wang, X.F. Zhang, J.S. Liang, B.Z. Fang, H.C. Zhang, Y.D. Zhang, and H. Zhang, Phase transformation and microstructural evolution of black tourmaline mineral powders during heating and cooling processes, Ceram. Int., 44(2018), No. 11, p. 13253. doi: 10.1016/j.ceramint.2018.04.154
|
[16] |
K.R. Chen, Study on the Synthesis and Properties of Pyroelectric Materials with Tourmaline-like Structure [Dissertation], China University of Geosciences, Beijing, 2018.
|
[17] |
Y.S. Wang, X.Y. Chuan, X. Cao, and D.B. Huang, The susceptibility property and the heat treatment of tourmaline from Houxianyu, Liaoning Province, Funct. Mater., 45(2014), No. 3, p. 03024.
|
[18] |
Y.L. An, L.Y. Zhang, Y. Zhang, N. Liu, S. Gao, and H. Chang, Heat treatment of tourmaline and its multi-function on purifying water, J. Jilin Univ. Earth Sci. Ed., 41(2011), No. 11, p. 235.
|
[19] |
G.J. Zhou, H. Liu, K.R. Chen, X.H. Gai, C.C. Zhao, L.B. Liao, K. Shen, Z.J. Fan, and Y. Shan, The origin of pyroelectricity in tourmaline at varying temperature, J. Alloys Compd., 744(2018), p. 328. doi: 10.1016/j.jallcom.2018.02.064
|
[20] |
Y.H. Di, F. Yuan, X.T. Ning, H.W. Jia, Y.Y. Liu, X.W. Zhang, C.Q. Li, S.L. Zheng, and Z.M. Sun. Functionalization of diatomite with glycine and amino silane for formaldehyde removal, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 356. doi: 10.1007/s12613-020-2245-3
|
[21] |
J.I. Knarud, S. Geving, and T. Kvande, Moisture performance of interior insulated brick wall segments subjected to wetting and drying – A laboratory investigation, Build. Environ., 188(2021), art. No. 107488. doi: 10.1016/j.buildenv.2020.107488
|
[22] |
R.Q. Gao, Y.M. Gu, H. Cao, X.J. Cao, X.N. Wang, L.J. Zhang, and Z.T. Shi, Preparation of tourmaline modification diatomite-based interior wall material and removal effect on formaldehyde, J. Light. Ind., 33(2018), No. 2, p. 7.
|
[23] |
X.Y. Gu, Mechanism of High Temperature Phase Transformation and Interfacial Migration of Tourmaline Particles and Their Effects on Ceramic Properties [Dissertation], Hebei University of Technology, Tianjin, 2017.
|
[24] |
J.G. Xu, Y.Q. Kuang, B. Zhang, Y.G. Liu, D.W. Fan, X.D. Li, and H.S. Xie, Thermal equation of state of natural tourmaline at high pressure and temperature, Phys. Chem. Miner., 43(2016), No. 5, p. 315. doi: 10.1007/s00269-015-0796-z
|
[25] |
B. Gullu and Y.K. Kadioglu, Use of tourmaline as a potential petrogenetic indicator in the determination of host magma: CRS, XRD and PED-XRF methods, Spectrochim. Acta Part A, 183(2017), p. 68. doi: 10.1016/j.saa.2017.04.032
|
[26] |
Q. Sun, Studies on Processing and Applied Foundation of Tourmaline Mineral Material [Dissertation], Jilin University, Jilin, 2010.
|
[27] |
N. Li, J.Q. Zhang, C.P. Wang, and H.W. Sun, Enhanced photocatalytic degradation of tetrabromobisphenol A by tourmaline–TiO2 composite catalyst, J. Mater. Sci., 52(2017), No. 12, p. 6937. doi: 10.1007/s10853-017-0926-8
|
[28] |
F. Wang, J.P. Meng, J.S. Liang, B.Z. Fang, and H.C. Zhang, Insight into the thermal behavior of tourmaline mineral, JOM, 71(2019), No. 8, p. 2468. doi: 10.1007/s11837-019-03391-1
|
[29] |
L.B. Liu and D.L. He, Heat treatment and microstructure characteristics of Foitite tourmaline, Trans. Mater. Heat Treat., 33(2012), No. 3, p. 16.
|
[30] |
J.B. Zhu and H. Yan, Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al2O3, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 309. doi: 10.1007/s12613-017-1409-2
|
[31] |
Y.H. Dong, C.A. Wang, and J. Zhou, Effect of YSZ fiber addition on microstructure and properties of porous YSZ ceramics, J. Mater. Sci., 47(2012), No. 17, p. 6326. doi: 10.1007/s10853-012-6555-3
|
[32] |
L.V. Morozova, M.V. Kalinina, and O.A. Shilova, Preparation and properties of porous ceramics based on alumomagnesium spinel and zirconium dioxide, Inorg. Mater. Appl. Res., 8(2017), No. 5, p. 781. doi: 10.1134/S2075113317050185
|
[33] |
Y. Wen, H.N. Huang, G.T. Zhang, X.C. Huang, J.Q. Yang, and Y.G. Dai, Research progress in the performance and application of tourmaline materials, Ceramics, 2019, No. 2, p. 17.
|
[34] |
P. Thongnopkun and P. Naowabut, Effect of heat treatment on Madagascar dravite tourmaline: UV-visible and diffuse reflectance infrared spectroscopic characterization, J. Appl. Spectrosc., 85(2018), No. 4, p. 616. doi: 10.1007/s10812-018-0695-4
|
[35] |
C.C. Zhao, L.B. Liao, Z.G. Xia, and X.N. Sun, Temperature-dependent Raman and infrared spectroscopy study on iron–magnesium tourmalines with different Fe content, Vib. Spectrosc., 62(2012), p. 28. doi: 10.1016/j.vibspec.2012.04.010
|
[36] |
T. Nakamura and T. Kubo, Tourmaline group crystals reaction with water, Ferroelectrics, 137(1992), No. 1, p. 13. doi: 10.1080/00150199208015933
|
[37] |
Z.J. Ji, Studies on the Spontaneous Polarity of Tourmaline and Its Applied Foundation [Dissertation], China Building Materials Academy, Beijing, 2003.
|
[38] |
W.W. Li, R.H. Wu, and Y. Dong, Study on infrared spectra and infrared radiation characteristics of tourmaline, Geol. J. China Univ., 14(2008), No. 3, p. 426.
|
[39] |
X.H. Gai, Effect of Rare Earth Complex on Negative Oxygen Ion Release and Infrared Radiation Characteristics of Tourmaline [dissertation], China University of Geosciences, Beijing, 2018.
|
[40] |
J. Liu, Y.H. Qin, S. Yuan, P. Gao, and Q.Q. Nie, Investigation on the mechanism of water activated via tourmaline powder, J. Mol. Liq., 332(2021), art. No. 115854. doi: 10.1016/j.molliq.2021.115854
|
[41] |
Y. Ahn, J. Seo, and J. Park, Electronic and vibrational spectra of tourmaline – The impact of electron beam irradiation and heat treatment, Vib. Spectrosc., 65(2013), p. 165. doi: 10.1016/j.vibspec.2013.01.002
|