Cite this article as:

Ruqin Gao, Yingrui Huang, Enhui Wang, Xinmei Hou, Lu Pan, Guoting Li, and Bingtao Liu, Effect of heat treatment temperature of the glaze lager on the structure and the formaldehyde removal performance of an interior wall tile, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp.2079-2085. https://dx.doi.org/10.1007/s12613-021-2359-2
Ruqin Gao, Yingrui Huang, Enhui Wang, Xinmei Hou, Lu Pan, Guoting Li, and Bingtao Liu, Effect of heat treatment temperature of the glaze lager on the structure and the formaldehyde removal performance of an interior wall tile, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp.2079-2085. https://dx.doi.org/10.1007/s12613-021-2359-2
引用本文 PDF XML SpringerLink

釉层热处理温度对内墙砖结构与甲醛去除性能的影响

摘要: 随着人们生活水平的提高,大量的石油产品及能够产生挥发性有机化合物的日用品、装饰品在装修中使用,室内空气质量受到严重影响,室内装修材料成为近年来的研究热点。本文旨在开发一种对室内甲醛去除效果好、使用方便、成本低廉的内墙材料。本文采用超细研磨、固相烧结和低温煅烧工艺,制备了不同釉层热处理温度的电气石/硅藻土基内墙砖,结合热重-差热分析、X-射线衍射和扫描电子显微镜等研究了材料的微观形貌与结构。以甲醛为目标降解物,考察釉层不同热处理温度下电气石/硅藻土基内墙砖对甲醛去除效果的影响。结果表明:随着釉层热处理温度的提高,硅藻土原始孔洞减少,比表面积和孔隙率下降,电气石结构发生变化。850°C时材料的表面结构稍有破坏,强度较高,对甲醛的去除效果较好,1 m3的环境舱内,300 min甲醛去除率达到73.6%;釉层热处理温度升温至950°C及以上,硅藻土和电气石结构遭到破坏,材料对甲醛的吸附和降解能力下降。

 

Effect of heat treatment temperature of the glaze lager on the structure and the formaldehyde removal performance of an interior wall tile

Abstract: With the improvement of people’s living standards, a large number of petroleum products, daily necessities and decorations that can produce volatile organic compounds are used in decoration, which seriously affects the indoor air quality. Interior decoration materials have become a research hotspot in recent years. The purpose of this paper is to develop a kind of interior wall material with good indoor formaldehyde removal effect, easily using, and low cost. In this paper, combining different heat treatment temperatures of the glaze layer, tourmaline/diatomite-based interior wall tiles were prepared by ultrafine grinding, solid sintering, and low temperature calcination. The glaze layer under different heat treatment temperatures was characterized by thermogravimetric-differential thermal analysis, X-ray diffraction, and scanning electron microscope. The influences of heat treatment temperature on the microscopic morphology and structure of the glaze layer were analyzed. Taking formaldehyde as the target degradation product, the effects of tourmaline/diatomite-based interior wall tiles on the removal of formaldehyde under different heat treatment temperatures of the glaze layer were investigated. The results showed that with the increase in heat treatment temperature, the original pores of diatomite decreased, the specific surface area decreased, and the structure of tourmaline changed. At 850°C, the surface structure of the material was slightly damaged, the strength was increased, and the removal effect of formaldehyde was better. In a 1 m3 environmental chamber, the formaldehyde removal rate reached 73.6% in 300 min. When the temperature was increased to 950°C and above, diatomite and the structure of tourmaline were destroyed, and the ability of the material to adsorb and degrade formaldehyde decreased.

 

/

返回文章
返回