留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 3
Mar.  2022

图(12)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2383
  • HTML全文浏览量:  1105
  • PDF下载量:  294
  • 被引次数: 0
Chao Miao, Lixing Liang, Fan Zhang, Shumei Chen, Kaixuan Shang, Jinlong Jiang, Yi Zhang,  and Jing Ouyang, Review of the fabrication and application of porous materials from silicon-rich industrial solid waste, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 424-438. https://doi.org/10.1007/s12613-021-2360-9
Cite this article as:
Chao Miao, Lixing Liang, Fan Zhang, Shumei Chen, Kaixuan Shang, Jinlong Jiang, Yi Zhang,  and Jing Ouyang, Review of the fabrication and application of porous materials from silicon-rich industrial solid waste, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 424-438. https://doi.org/10.1007/s12613-021-2360-9
引用本文 PDF XML SpringerLink
特约综述

富硅工业固废制备多孔材料及其应用综述

  • 通讯作者:

    张毅    E-mail: yee_z10@csu.edu.cn

    欧阳静    E-mail: jingouyang@csu.edu.cn

文章亮点

  • (1) 梳理和分析了典型富硅工业固体废物的物理和化学性质。
  • (2) 总结并提出了富硅工业固废制备硅基多孔材料的一般方法。
  • (3) 对基于SRISW的微孔、介孔和大孔材料的常用功能设计和应用进行了分类。
  • 多孔材料在隔音、隔热、减振、催化等方面具有广阔的应用前景。大多数工业固体废料,如尾矿、煤矸石、粉煤灰等都富含硅。而高硅含量的固废恰是合成硅基多孔材料(如沸石、介孔二氧化硅、微晶玻璃和地聚合物泡沫)的潜在原料。工业固废的大量堆积、处置和利用不充分,将破坏土地资源,危害生活环境,所以将其无害化转化为多孔材料是利用工业固废生产环境友好型产品的有效途径。本文综述了近年来富硅工业固废(SRISW)制备多孔材料的应用和研究进展。首先分析了一些典型富硅工业固体废物的化学组成和物理化学性质,对硅基多孔材料的加工和应用进行了简要综述。概述了SRISW多孔材料的制备方法,并对基于SRISW的微孔、介孔和大孔材料的常用功能设计和应用进行了分类,分析了SRISW向多孔材料的转化机理和实现多孔材料大规模制造应用的实际策略。总结了SRISW在制备多孔材料及其应用过程中可能存在的问题,并对其发展前景进行了展望。为工业固废的回收利用,开发可持续的“绿色材料”提供了典型的参考。

  • Invited Review

    Review of the fabrication and application of porous materials from silicon-rich industrial solid waste

    + Author Affiliations
    • Porous materials have promise as sound insulation, heat barrier, vibration attenuation, and catalysts. Most industrial solid wastes, such as tailings, coal gangue, and fly ash are rich in silicon. Additionally, a high silicon content waste is a potential raw material for the synthesis of silicon-based, multi-porous materials such as zeolites, mesoporous silica, glass–ceramics, and geopolymer foams. Representative silicon-rich industrial solid wastes (SRISWs) are the focus of this mini review of the processing and application of porous silicon materials with respect to the physical and chemical properties of the SRISW. The transformation methods of preparing porous materials from SRISWs are summarized, and their research status in micro-, meso-, and macro-scale porous materials are described. Possible problems in the application of SRISWs and in the preparation of functional porous materials are analyzed, and their development prospects are discussed. This review should provide a typical reference for the recycling and use of industrial solid wastes to develop sustainable “green materials.”

    • loading
    • [1]
      W. Lu, Waste Recycling System Material Metabolism Analysis Model and Its Application [Dissertation], Tsinghua University, Beijing, 2010, p. 2.
      [2]
      X.L. Wang, Q.Y. Li, S.C. Chen, and G.B. Yue, Application research and prospect of industrial soild waste in new building materials, Bull. Chin. Ceram. Soc., 38(2019), No. 11, p. 3456.
      [3]
      Z.G. Wang, J. Lv, F. Gu, J. Yang, and J.F. Guo, Environmental and economic performance of an integrated municipal solid waste treatment: A Chinese case study, Sci. Total. Environ., 709(2020), art. No. 136096. doi: 10.1016/j.scitotenv.2019.136096
      [4]
      L. Lebreton and A. Andrady, Future scenarios of global plastic waste generation and disposal, Palgrave Commun., 5(2019), No. 1, p. 1. doi: 10.1057/s41599-018-0199-0
      [5]
      A.K. Awasthi, J.H. Li, L. Koh, and O.A. Ogunseitan, Circular economy and electronic waste, Nat. Electron., 2(2019), No. 3, p. 86. doi: 10.1038/s41928-019-0225-2
      [6]
      J. Werther, M. Saenger, E.U. Hartge, T. Ogada, and Z. Siagi, Combustion of agricultural residues, Prog. Energy Combust. Sci., 26(2000), No. 1, p. 1. doi: 10.1016/S0360-1285(99)00005-2
      [7]
      P.A. Milani, J.L. Consonni, G. Labuto, and E.N.V.M. Carrilho, Agricultural solid waste for sorption of metal ions, part II: Competitive assessment in multielemental solution and lake water, Environ. Sci. Pollut. Res., 25(2018), No. 36, p. 35906. doi: 10.1007/s11356-018-1726-7
      [8]
      X.F. Wen, Q.M. Luo, H.L. Hu, N. Wang, Y. Chen, J. Jin, Y.L. Hao, G.Y. Xu, F.M. Li, and W.J. Fang, Comparison research on waste classification between China and the EU, Japan, and the USA, J. Mater. Cycles Waste Manage., 16(2014), No. 2, p. 321. doi: 10.1007/s10163-013-0190-1
      [9]
      W. Ferdous, A. Manalo, R. Siddique, P. Mendis, Z.G. Yan, H.S. Wong, W. Lokuge, T. Aravinthan, and P. Schubel, Recycling of landfill wastes (tyres, plastics and glass) in construction—A review on global waste generation, performance, application and future opportunities, Resour. Conserv. Recycl., 173(2021), art. No. 105745. doi: 10.1016/j.resconrec.2021.105745
      [10]
      K.S.W. Sing, D.H. Everett, R.A.W Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, and T. Siemieniewska, Reporting physisorption data for gas/solid systems, Pure Appl. Chem., 57(1985), No. 4, p. 603. doi: 10.1351/pac198557040603
      [11]
      K. Adil, Y. Belmabkhout, R.S. Pillai, A. Cadiau, P.M. Bhatt, A.H. Assen, G. Maurin, and M. Eddaoudi, Gas/vapour separation using ultra-microporous metal–organic frameworks: Insights into the structure/separation relationship, Chem. Soc. Rev., 46(2017), No. 11, p. 3402. doi: 10.1039/C7CS00153C
      [12]
      Y. Li, Z.Y. Fu, and B.L. Su, Hierarchically structured porous materials for energy conversion and storage, Adv. Funct. Mater., 22(2012), No. 22, p. 4634. doi: 10.1002/adfm.201200591
      [13]
      E.P. Ng, D. Chateigner, T. Bein, V. Valtchev, and S. Mintova, Capturing ultrasmall EMT zeolite from template-free systems, Science, 335(2012), No. 6064, p. 70. doi: 10.1126/science.1214798
      [14]
      N. Ren, J. Bronić, B. Subotić, X.C. Lv, Z.J. Yang, and Y. Tang, Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 1: Influence of alkalinity on the structural, particulate and chemical properties of the products, Microporous Mesoporous Mater., 139(2011), No. 1-3, p. 197. doi: 10.1016/j.micromeso.2010.10.043
      [15]
      Y.L. Tan, B.H. Hameed, and A.Z. Abdullah, Deoxygenation of pyrolysis vapour derived from durian shell using catalysts prepared from industrial wastes rich in Ca, Fe, Si and Al, Sci. Total. Environ., 703(2020), art. No. 134902. doi: 10.1016/j.scitotenv.2019.134902
      [16]
      X.J. Shen, G.B. Qiu, C.S. Yue, M. Guo, and M. Zhang, Multiple copper adsorption and regeneration by zeolite 4A synthesized from bauxite tailings, Environ. Sci. Pollut. Res., 24(2017), No. 27, p. 21829. doi: 10.1007/s11356-017-9824-5
      [17]
      X.B. Li, J.J. Ye, Z.H. Liu, Y.Q. Qiu, L.J. Li, S. Mao, X.C. Wang, and Q. Zhang, Microwave digestion and alkali fusion assisted hydrothermal synthesis of zeolite from coal fly ash for enhanced adsorption of Cd(II) in aqueous solution, J. Central South Univ., 25(2018), No. 1, p. 9. doi: 10.1007/s11771-018-3712-0
      [18]
      M. Vidaurre-Arbizu, S. Pérez-Bou, A. Zuazua-Ros, and C. Martín-Gómez, From the leather industry to building sector: Exploration of potential applications of discarded solid wastes, J. Clean. Prod., 291(2021), art. No. 125960. doi: 10.1016/j.jclepro.2021.125960
      [19]
      J.S. Zhao, K. Ni, Y.P. Su, and Y.X. Shi, An evaluation of iron ore tailings characteristics and iron ore tailings concrete properties, Constr. Build. Mater., 286(2021), art. No. 122968. doi: 10.1016/j.conbuildmat.2021.122968
      [20]
      Y.L. Zhang and T.C. Ling, Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials - A review, Constr. Build. Mater., 234(2020), art. No. 117424. doi: 10.1016/j.conbuildmat.2019.117424
      [21]
      M.F. Wang and X.M. Liu, Applications of red mud as an environmental remediation material: A review, J. Hazard. Mater., 408(2021), art. No. 124420. doi: 10.1016/j.jhazmat.2020.124420
      [22]
      I. Majchrzak-Kucęba and W. Nowak, Characterization of MCM-41 mesoporous materials derived from Polish fly ashes, Int. J. Miner. Process., 101(2011), No. 1-4, p. 100. doi: 10.1016/j.minpro.2011.09.002
      [23]
      E. Özbay, M. Erdemir, and H.İ. Durmuş, Utilization and efficiency of ground granulated blast furnace slag on concrete properties - A review, Constr. Build. Mater., 105(2016), p. 423. doi: 10.1016/j.conbuildmat.2015.12.153
      [24]
      A. Zimmer and S.R. Bragança, A review of waste glass as a raw material for whitewares, J. Environ. Manage., 244(2019), p. 161. doi: 10.1016/j.jenvman.2019.05.038
      [25]
      M. Sayehi, H. Tounsi, G. Garbarino, P. Riani, and G. Busca, Reutilization of silicon- and aluminum- containing wastes in the perspective of the preparation of SiO2−Al2O3 based porous materials for adsorbents and catalysts, Waste Manage., 103(2020), p. 146. doi: 10.1016/j.wasman.2019.12.013
      [26]
      S.K. Das, S. Kumar, and P. Ramachandrarao, Exploitation of iron ore tailing for the development of ceramic tiles, Waste Manage., 20(2000), No. 8, p. 725. doi: 10.1016/S0956-053X(00)00034-9
      [27]
      S.V. Vassilev and C.G. Vassileva, A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour, Fuel, 86(2007), No. 10-11, p. 1490. doi: 10.1016/j.fuel.2006.11.020
      [28]
      K.Z. Yan, Phase Transformation Mechanism of Aluminosilicate Minerals in Coal Wastes Calcined with Sodium Carbonate [Dissertation], Shanxi University, Taiyuan, 2018, p. 5.
      [29]
      S. Sushil and V.S. Batra, Catalytic applications of red mud, an aluminium industry waste: A review, Appl. Catal. B: Environ., 81(2008), No. 1-2, p. 64. doi: 10.1016/j.apcatb.2007.12.002
      [30]
      J. Ren, J. Chen, W. Guo, B. Yang, X.P. Qin, and P. Du, Physical, chemical, and surface charge properties of bauxite residue derived from a combined process, J. Cent. South Univ., 26(2019), No. 2, p. 373. doi: 10.1007/s11771-019-4009-7
      [31]
      J. Burlakovs, Y. Jani, M. Kriipsalu, Z. Vincevica-Gaile, F. Kaczala, G. Celma, R. Ozola, L. Rozina, V. Rudovica, M. Hogland, A. Viksna, K.M. Pehme, W. Hogland, and M. Klavins, On the way to ‘zero waste’ management: Recovery potential of elements, including rare earth elements, from fine fraction of waste, J. Clean. Prod., 186(2018), p. 81. doi: 10.1016/j.jclepro.2018.03.102
      [32]
      F. Yan, J.G. Jiang, S.C. Tian, Z.W. Liu, J. Shi, K.M. Li, X.J. Chen, and Y.W. Xu, A green and facile synthesis of ordered mesoporous nanosilica using coal fly ash, ACS Sustainable Chem. Eng., 4(2016), No. 9, p. 4654. doi: 10.1021/acssuschemeng.6b00793
      [33]
      J. Xiao, L.Y. Zhang, J. Yuan, Z. Yao, L. Tang, Z.A. Wang, and Z.H. Zhang, Co-utilization of spent pot-lining and coal gangue by hydrothermal acid-leaching method to prepare silicon carbide powder, J. Clean. Prod., 204(2018), p. 848. doi: 10.1016/j.jclepro.2018.08.331
      [34]
      Y. Lü, J. Li, H.P. Ye, D.Y. Du, J.X. Li, P. Sun, M.Y. Ma, and J.X. Wen, Bioleaching behaviors of silicon and metals in electrolytic manganese residue using silicate bacteria, J. Clean. Prod., 228(2019), p. 901. doi: 10.1016/j.jclepro.2019.04.289
      [35]
      M. Hecini, M. Tablaoui, S. Aoudj, B. Palahouane, O. Bouchelaghem, S. Beddek, and N. Drouiche, Recovery of silicon carbide and synthesis of silica materials from silicon ingot cutting fluid waste, Sep. Purif. Technol., 254(2021), art. No. 117556. doi: 10.1016/j.seppur.2020.117556
      [36]
      C. Lu, H.M. Yang, J. Wang, Q. Tan, and L.J. Fu, Utilization of iron tailings to prepare high-surface area mesoporous silica materials, Sci. Total. Environ., 736(2020), art. No. 139483. doi: 10.1016/j.scitotenv.2020.139483
      [37]
      Z.Q. Qiang, R. Li, Z.Q. Yang, M. Guo, F.Q. Cheng, and M. Zhang, Zeolite X adsorbent with high stability synthesized from bauxite tailings for cyclic adsorption of CO2, Energ. Fuel., 33(2019), No. 7, p. 6641. doi: 10.1021/acs.energyfuels.9b01268
      [38]
      P.C. Lei, X.J. Shen, Y. Li, M. Guo, and M. Zhang, An improved implementable process for the synthesis of zeolite 4A from bauxite tailings and its Cr3+ removal capacity, Int. J. Miner. Metall. Mater., 23(2016), No. 7, p. 850. doi: 10.1007/s12613-016-1300-6
      [39]
      Y.B. Zong, C.Y. Zhao, W.H. Chen, Z.B. Liu, and D.Q. Cang, Preparation of hydro-sodalite from fly ash using a hydrothermal method with a submolten salt system and study of the phase transition process, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 55. doi: 10.1007/s12613-019-1904-8
      [40]
      B. Liang, M.X. Zhang, H. Li, M. Zhao, P.F. Xu, and L.B. Deng, Preparation of ceramic foams from ceramic tile polishing waste and fly ash without added foaming agent, Ceram. Int., 47(2021), No. 16, p. 23338. doi: 10.1016/j.ceramint.2021.05.047
      [41]
      J.W. Guo, X.M. Liu, J.M. Yu, C.F. Xu, Y.F. Wu, D.A. Pan, and R.A. Senthil, An overview of the comprehensive utilization of silicon-based solid waste related to PV industry, Resour. Conserv. Recycl., 169(2021), art. No. 105450. doi: 10.1016/j.resconrec.2021.105450
      [42]
      A. Gedik, An exploration into the utilization of recycled waste glass as a surrogate powder to crushed stone dust in asphalt pavement construction, Constr. Build. Mater., 300(2021), art. No. 123980. doi: 10.1016/j.conbuildmat.2021.123980
      [43]
      B.B. Qiu and F. Duan, Synthesis of industrial solid wastes/biochar composites and their use for adsorption of phosphate: From surface properties to sorption mechanism, Colloids Surf. A: Physicochem. Eng. Aspects, 571(2019), p. 86. doi: 10.1016/j.colsurfa.2019.03.041
      [44]
      L. Han, J.X. Wang, Z. Liu, Y.B. Zhang, Y.X. Jin, J.X. Li, and D.M. Wang, Synthesis of fly ash-based self-supported zeolites foam geopolymer via saturated steam treatment, J. Hazard. Mater., 393(2020), art. No. 122468. doi: 10.1016/j.jhazmat.2020.122468
      [45]
      R.F. Li, Y. Zhou, and X.L. Duan, A novel composite phase change material with paraffin wax in tailings porous ceramics, Appl. Therm. Eng., 151(2019), p. 115. doi: 10.1016/j.applthermaleng.2019.01.104
      [46]
      J.W. Cao, J.S. Lu, L.X. Jiang, and Z. Wang, Sinterability, microstructure and compressive strength of porous glass-ceramics from metallurgical silicon slag and waste glass, Ceram. Int., 42(2016), No. 8, p. 10079. doi: 10.1016/j.ceramint.2016.03.113
      [47]
      A.G. Slater and A.I. Cooper, Function-led design of new porous materials, Science, 348(2015), No. 6238, p. aaa8075. doi: 10.1126/science.aaa8075
      [48]
      C.N. Qin, M.Z. Yao, Y. Liu, Y.J. Yang, Y.F. Zong, and H. Zhao, MFC/NFC-based foam/aerogel for production of porous materials: Preparation, properties and applications, Materials, 13(2020), No. 23, art. No. 5568. doi: 10.3390/ma13235568
      [49]
      I.G. Clayson, D. Hewitt, M. Hutereau, T. Pope, and B. Slater, High throughput methods in the synthesis, characterization, and optimization of porous materials, Adv. Mater., 32(2020), No. 44, art. No. 2002780. doi: 10.1002/adma.202002780
      [50]
      A. Olgun, N. Atar, and S.B. Wang, Batch and column studies of phosphate and nitrate adsorption on waste solids containing boron impurity, Chem. Eng. J., 222(2013), p. 108. doi: 10.1016/j.cej.2013.02.029
      [51]
      S. Pourrahim, A. Salem, S. Salem, and R. Tavangar, Application of solid waste of ductile cast iron industry for treatment of wastewater contaminated by reactive blue dye via appropriate nano-porous magnesium oxide, Environ. Pollut., 256(2020), art. No. 113454. doi: 10.1016/j.envpol.2019.113454
      [52]
      B. Mella, M.J. Puchana-Rosero, D.E.S. Costa, and M. Gutterres, Utilization of tannery solid waste as an alternative biosorbent for acid dyes in wastewater treatment, J. Mol. Liq., 242(2017), p. 137. doi: 10.1016/j.molliq.2017.06.131
      [53]
      J.Q. Liu, J. Goss, T. Calverley, Y.J. Liu, C. Broomall, J. Kang, R. Golombeski, D. Anaya, B. Moe, K. Mabe, G. Watson, and A. Wetzel, Carbon molecular sieve fiber with 3.4-4.9 Angstrom effective micropores for propylene/propane and other gas separations, Microporous Mesoporous Mater., 305(2020), art. No. 110341. doi: 10.1016/j.micromeso.2020.110341
      [54]
      J. Hou, H.C. Zhang, G.P. Simon, and H.T. Wang, Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions, Adv. Mater., 32(2020), No. 18, art. No. 1902009. doi: 10.1002/adma.201902009
      [55]
      A. Khaleque, M.M. Alam, M. Hoque, S. Mondal, J.B. Haider, B.T. Xu, M.A.H. Johir, A.K. Karmakar, J.L. Zhou, M.B. Ahmed, and M.A. Moni, Zeolite synthesis from low-cost materials and environmental applications: A review, Environ. Adv., 2(2020), art. No. 100019. doi: 10.1016/j.envadv.2020.100019
      [56]
      D.X. Ouyang, Y.T. Zhuo, L. Hu, Q. Zeng, Y.H. Hu, and Z.G. He, Research on the adsorption behavior of heavy metal ions by porous material prepared with silicate tailings, Minerals, 9(2019), No. 5, art. No. 291. doi: 10.3390/min9050291
      [57]
      G.Y. Dong, G.Y. Tian, L.L. Gong, Q.G. Tang, M.Y. Li, J.P. Meng, and J.S. Liang, Mesoporous zinc silicate composites derived from iron ore tailings for highly efficient dye removal: Structure and morphology evolution, Micropor. Mesopor. Mater., 305(2020), art. No. 110352. doi: 10.1016/j.micromeso.2020.110352
      [58]
      G. Yang, Y.X. Deng, and J. Wang, Non-hydrothermal synthesis and characterization of MCM-41 mesoporous materials from iron ore tailing, Ceram. Int., 40(2014), No. 5, p. 7401. doi: 10.1016/j.ceramint.2013.12.086
      [59]
      M. Sari Yilmaz and S. Piskin, Evaluation of novel synthesis of ordered SBA-15 mesoporous silica from gold mine tailings slurry by experimental design, J. Taiwan Inst. Chem. Eng., 46(2015), p. 176. doi: 10.1016/j.jtice.2014.09.011
      [60]
      S. Kim, Y. Han, J. Park, and J. Park, Adsorption characteristics of mesoporous silica SBA-15 synthesized from mine tailing, Int. J. Miner. Process., 140(2015), p. 88. doi: 10.1016/j.minpro.2015.04.027
      [61]
      S.Z. Salleh, A. Awang Kechik, A.H. Yusoff, M.A.A. Taib, M. Mohamad Nor, M. Mohamad, T.G. Tan, A. Ali, M.N. Masri, J.J. Mohamed, S.K. Zakaria, J.G. Boon, F. Budiman, and P.T. Teo, Recycling food, agricultural, and industrial wastes as pore-forming agents for sustainable porous ceramic production: A review, J. Clean. Prod., 306(2021), art. No. 127264. doi: 10.1016/j.jclepro.2021.127264
      [62]
      A. Yaras, M. Sutcu, O. Gencel, and E. Erdogmus, Use of carbonation sludge in clay based building materials processing for eco-friendly, lightweight and thermal insulation, Constr. Build. Mater., 224(2019), p. 57. doi: 10.1016/j.conbuildmat.2019.07.080
      [63]
      W.X. Shang, Z.W. Peng, Y.W. Huang, F.Q. Gu, J. Zhang, H.M. Tang, L. Yang, W.G. Tian, M.J. Rao, G.H. Li, and T. Jiang, Production of glass-ceramics from metallurgical slags, J. Clean. Prod., 317(2021), art. No. 128220. doi: 10.1016/j.jclepro.2021.128220
      [64]
      P.R. Monich, A.R. Romero, D. Desideri, and E. Bernardo, Waste-derived glass-ceramics fired in nitrogen: Stabilization and functionalization, Constr. Build. Mater., 232(2020), art. No. 117265. doi: 10.1016/j.conbuildmat.2019.117265
      [65]
      R.K. Chinnam, A.A. Francis, J. Will, E. Bernardo, and A.R. Boccaccini, Review. Functional glasses and glass-ceramics derived from iron rich waste and combination of industrial residues, J. Non-Cryst. Solids, 365(2013), p. 63. doi: 10.1016/j.jnoncrysol.2012.12.006
      [66]
      C.P. Xi, J.M. Zhou, F. Zheng, J.M. Gao, P.F. Hu, Y. Li, Q. Zhen, S. Bashir, and J.L. Liu, Conversion of extracted titanium tailing and waste glass to value-added porous glass ceramic with improved performances, J. Environ. Manage., 261(2020), art. No. 110197. doi: 10.1016/j.jenvman.2020.110197
      [67]
      W.H. Zheng, H. Cao, J.B. Zhong, S.Y. Qian, Z.G. Peng, and C.H. Shen, CaO−MgO−Al2O3−SiO2 glass-ceramics from lithium porcelain clay tailings for new building materials, J. Non-Cryst. Solids, 409(2015), p. 27. doi: 10.1016/j.jnoncrysol.2014.11.002
      [68]
      C.Q. Ye, F. He, H. Shu, H. Qi, Q.P. Zhang, P.Y. Song, and J.L. Xie, Preparation and properties of sintered glass-ceramics containing Au−Cu tailing waste, Mater. Des., 86(2015), p. 782. doi: 10.1016/j.matdes.2015.07.173
      [69]
      W.M. Zheng, H.J. Sun, T.J. Peng, and L. Zeng, Novel preparation of foamed glass-ceramics from asbestos tailings and waste glass by self-expansion in high temperature, J. Non-Cryst. Solids, 529(2020), art. No. 119767. doi: 10.1016/j.jnoncrysol.2019.119767
      [70]
      Y.H. Ren, Q. Ren, X.L. Wu, J.L. Zheng, and O. Hai, Recycling of solid wastes ferrochromium slag for preparation of eco-friendly high-strength spinel-corundum ceramics, Mater. Chem. Phys., 239(2020), art. No. 122060. doi: 10.1016/j.matchemphys.2019.122060
      [71]
      L. Li, W.F. Liu, Q.X. You, M.C. Chen, and Q. Zeng, Waste ceramic powder as a pozzolanic supplementary filler of cement for developing sustainable building materials, J. Clean. Prod., 259(2020), art. No. 120853. doi: 10.1016/j.jclepro.2020.120853
      [72]
      Y.J. Ding, X.Y. Zhang, B.Y. Wu, B. Liu, and S.G. Zhang, Highly porous ceramics production using slags from smelting of spent automotive catalysts, Resour. Conserv. Recycl., 166(2021), art. No. 105373. doi: 10.1016/j.resconrec.2020.105373
      [73]
      Z.M. Wang, X.J. Lyu, G. Yao, P. Wu, J.X. Wang, and J. Wei, Preparation of Ca−Si−Al−Mg porous ceramics by Co-operation of Ca&Mg-contained soda residue and altered rock gold tailings, J. Clean. Prod., 262(2020), art. No. 121345. doi: 10.1016/j.jclepro.2020.121345
      [74]
      L. Zeng, H.J. Sun, T.J. Peng, and W.M. Zheng, Preparation of porous glass-ceramics from coal fly ash and asbestos tailings by high-temperature pore-forming, Waste Manage., 106(2020), p. 184. doi: 10.1016/j.wasman.2020.03.008
      [75]
      J.B. Zhu and H. Yan, Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al2O3, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 309. doi: 10.1007/s12613-017-1409-2
      [76]
      P. Perumal, A. Hasnain, T. Luukkonen, P. Kinnunen, and M. Illikainen, Role of surfactants on the synthesis of impure Kaolin-based alkali-activated, low-temperature porous ceramics, Open Ceram., 6(2021), art. No. 100097. doi: 10.1016/j.oceram.2021.100097
      [77]
      L. Zeng, H.J. Sun, T.J. Peng, and T. Hui, Effect of glass content on sintering kinetics, microstructure and mechanical properties of glass-ceramics from coal fly ash and waste glass, Mater. Chem. Phys., 260(2021), art. No. 124120. doi: 10.1016/j.matchemphys.2020.124120
      [78]
      C.H. Chen, K.Q. Feng, Y. Zhou, and H.L. Zhou, Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 931. doi: 10.1007/s12613-017-1480-8
      [79]
      R.C. da Silva, F.N. Puglieri, D.M.d.G. Chiroli, G.A. Bartmeyer, E.T. Kubaski, and S.M. Tebcherani, Recycling of glass waste into foam glass boards: A comparison of cradle-to-gate life cycles of boards with different foaming agents, Sci. Total. Environ., 771(2021), art. No. 145276. doi: 10.1016/j.scitotenv.2021.145276
      [80]
      R.C. da Silva, E.T. Kubaski, E.T. Tenório-Neto, M.K. Lima-Tenório, and S.M. Tebcherani, Foam glass using sodium hydroxide as foaming agent: Study on the reaction mechanism in soda-lime glass matrix, J. Non-Cryst. Solids, 511(2019), p. 177. doi: 10.1016/j.jnoncrysol.2019.02.003
      [81]
      M.T. Souza, B.G.O. Maia, L.B. Teixeira, K.G.d. Oliveira, A.H.B. Teixeira, and A.P.N.d. Oliveira, Glass foams produced from glass bottles and eggshell wastes, Process. Saf. Environ. Prot., 111(2017), p. 60. doi: 10.1016/j.psep.2017.06.011
      [82]
      Y.H. Niu, X.Y. Fan, D. Ren, W.C. Wang, Y.K. Li, Z.F. Yang, and L.X. Cui, Effect of Na2CO3 content on thermal properties of foam-glass ceramics prepared from smelting slag, Mater. Chem. Phys., 256(2020), art. No. 123610. doi: 10.1016/j.matchemphys.2020.123610
      [83]
      H.A. Abdel-Gawwad, M.S. Mohammed, and M. Heikal, Ultra-lightweight porous materials fabrication and hazardous lead-stabilization through alkali-activation/sintering of different industrial solid wastes, J. Clean. Prod., 244(2020), art. No. 118742. doi: 10.1016/j.jclepro.2019.118742
      [84]
      H.C. Chen, H.R. Lin, P.P. Zhang, L. Yu, L.J. Chen, X. Huang, B.Q. Jiao, and D.W. Li, Immobilisation of heavy metals in hazardous waste incineration residue using SiO2−Al2O3−Fe2O3−CaO glass-ceramic, Ceram. Int., 47(2021), No. 6, p. 8468. doi: 10.1016/j.ceramint.2020.11.213
      [85]
      J. Luo, X. Li, F.J. Zhang, S. Chen, and D. Ren, Sintering of monoclinic SrAl2Si2O8 ceramics and their Sr immobilization, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1057. doi: 10.1007/s12613-020-2056-6
      [86]
      X. Peng, Q. Shuai, H. Li, Q. Ding, Y. Gu, C.J. Cheng, and Z.H. Xu, Fabrication and fireproofing performance of the coal fly ash-metakaolin-based geopolymer foams, Materials, 13(2020), No. 7, art. No. 1750. doi: 10.3390/ma13071750
      [87]
      A.K. Thakur, A. Pappu, and V.K. Thakur, Synthesis and characterization of new class of geopolymer hybrid composite materials from industrial wastes, J. Clean. Prod., 230(2019), p. 11. doi: 10.1016/j.jclepro.2019.05.081
      [88]
      P. Duan, C.J. Yan, W. Zhou, and D.M. Ren, Development of fly ash and iron ore tailing based porous geopolymer for removal of Cu(II) from wastewater, Ceram. Int., 42(2016), No. 12, p. 13507. doi: 10.1016/j.ceramint.2016.05.143
      [89]
      R.M. Novais, J. Carvalheiras, D.M. Tobaldi, M.P. Seabra, R.C. Pullar, and J.A. Labrincha, Synthesis of porous biomass fly ash-based geopolymer spheres for efficient removal of methylene blue from wastewaters, J. Clean. Prod., 207(2019), p. 350. doi: 10.1016/j.jclepro.2018.09.265
      [90]
      J.H. Zhao, L.Y. Tong, B.E. Li, T.H. Chen, C.P. Wang, G.Q. Yang, and Y. Zheng, Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment, J. Clean. Prod., 307(2021), art. No. 127085. doi: 10.1016/j.jclepro.2021.127085
      [91]
      J.R. Gasca-Tirado, A. Manzano-Ramírez, R.R. Velázquez-Castillo, B.E. Gómez-Luna, R.F. Nava-Mendoza, J.M. López-Romero, L.M. Apátiga-Castro, and E.M. Rivera-Muñoz, Porous geopolymer as a possible template for a phase change material, Mater. Chem. Phys., 236(2019), art. No. 121785. doi: 10.1016/j.matchemphys.2019.121785
      [92]
      H. Gao, L.B. Liao, H. Liu, L.F. Mei, Z.J. Wang, D.L. Huang, G. Lv, G.D. Zhu, and C.X. Wang, Optimization of thermal insulation performance of porous geopolymers under the guidance of thermal conductivity calculation, Ceram. Int., 46(2020), No. 10, p. 16537. doi: 10.1016/j.ceramint.2020.03.221
      [93]
      P. Alvarenga, D. Rodrigues, C. Mourinha, P. Palma, A. de Varennes, N. Cruz, L.A.C. Tarelho, and S. Rodrigues, Use of wastes from the pulp and paper industry for the remediation of soils degraded by mining activities: Chemical, biochemical and ecotoxicological effects, Sci. Total. Environ., 686(2019), p. 1152. doi: 10.1016/j.scitotenv.2019.06.038
      [94]
      F.Q. Guo, X.M. Zhao, K.Y. Peng, S. Liang, X.P. Jia, and L. Qian, Catalytic reforming of biomass primary tar from pyrolysis over waste steel slag based catalysts, Int. J. Hydrogen Energy, 44(2019), No. 31, p. 16224. doi: 10.1016/j.ijhydene.2019.04.190
      [95]
      A.C.M. Loy, S. Yusup, M.K. Lam, B.L.F. Chin, M. Shahbaz, A. Yamamoto, and M.N. Acda, The effect of industrial waste coal bottom ash as catalyst in catalytic pyrolysis of rice husk for syngas production, Energy Convers. Manage., 165(2018), p. 541. doi: 10.1016/j.enconman.2018.03.063
      [96]
      L.H. Shao, G.T. Wei, Y.Z. Wang, Z.M. Li, L.Y. Zhang, S.K. Zhao, and M. Zhou, Preparation and application of acidified/calcined red mud catalyst for catalytic degradation of butyl xanthate in Fenton-like process, Environ. Sci. Pollut. Res., 23(2016), No. 15, p. 15202. doi: 10.1007/s11356-016-6691-4
      [97]
      B. Das and K. Mohanty, A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud, Renewable Energy, 143(2019), p. 1791. doi: 10.1016/j.renene.2019.05.114
      [98]
      G.P. Shi, T.W. Liu, G.Z. Li, and Z. Wang, A novel thermal insulation composite fabricated with industrial solid wastes and expanded polystyrene beads by compression method, J. Clean. Prod., 279(2021), art. No. 123420. doi: 10.1016/j.jclepro.2020.123420
      [99]
      R.F. Zhang, J.J. Feng, X.D. Cheng, L.L. Gong, Y. Li, and H.P. Zhang, Porous thermal insulation materials derived from fly ash using a foaming and slip casting method, Energy Build., 81(2014), p. 262. doi: 10.1016/j.enbuild.2014.06.028
      [100]
      R.F. Li, Y. Zhou, C.W. Li, S.B. Li, and Z.Y. Huang, Recycling of industrial waste iron tailings in porous bricks with low thermal conductivity, Constr. Build. Mater., 213(2019), p. 43. doi: 10.1016/j.conbuildmat.2019.04.040

    Catalog


    • /

      返回文章
      返回