Cite this article as: |
Zhongbao Que, Liang Chu, Shuaibo Zhai, Yifei Feng, Chen Chen, Wei Liu, Ruiyuan Hu, Jing Hu, and Xing’ao Li, Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1280-1285. https://doi.org/10.1007/s12613-021-2361-8 |
楚亮 E-mail: chuliang@njupt.edu.cn
[1] |
A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131(2009), No. 17, p. 6050. doi: 10.1021/ja809598r
|
[2] |
L. Chu and L.M. Ding, Self-assembled monolayers in perovskite solar cells, J. Semicond., 42(2021), No. 9, art. No. 090202. doi: 10.1088/1674-4926/42/9/090202
|
[3] |
L. Chu, Pseudohalide anion engineering for highly efficient and stable perovskite solar cells, Matter, 4(2021), No. 6, p. 1762. doi: 10.1016/j.matt.2021.05.007
|
[4] |
J. Yang, L. Chu, R.Y. Hu, W. Liu, N.J. Liu, Y.H. Ma, W. Ahmad, and X.A. Li, Work function engineering to enhance open-circuit voltage in planar perovskite solar cells by g-C3N4 nanosheets, Nano Res., 14(2021), No. 7, p. 2139. doi: 10.1007/s12274-021-3408-x
|
[5] |
X.C. Zhang, Strain control for halide perovskites, Matter, 2(2020), No. 2, p. 294. doi: 10.1016/j.matt.2020.01.010
|
[6] |
National Renewable Energy Laboratory, Best Research Cell Efficiency [2020-09-19]. https://www.nrel.gov/pv/cell-efficiency.html.
|
[7] |
W.E.I. Sha, H. Zhang, Z.S. Wang, H.L. Zhu, X.G. Ren, F. Lin, A.K.Y. Jen, and W.C.H. Choy, Quantifying efficiency loss of perovskite solar cells by a modified detailed balance model, Adv. Energy Mater., 8(2018), No. 8, art. No. 1701586. doi: 10.1002/aenm.201701586
|
[8] |
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338(2012), No. 6107, p. 643. doi: 10.1126/science.1228604
|
[9] |
G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, and T.C. Sum, Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3, Science, 342(2013), No. 6156, p. 344. doi: 10.1126/science.1243167
|
[10] |
S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342(2013), No. 6156, p. 341. doi: 10.1126/science.1243982
|
[11] |
P.F. Fu, S. Hu, J. Tang, and Z.W. Xiao, Material exploration via designing spatial arrangement of octahedral units: A case study of lead halide perovskites, Front. Optoelectron., 14(2021), No. 2, p. 252. doi: 10.1007/s12200-021-1227-z
|
[12] |
J.H. Zheng, L.X. Zhu, Z.T. Shen, F.M. Li, L.Y. Ling, H.L. Li, and C. Chen, Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 283. doi: 10.1007/s12613-021-2316-0
|
[13] |
Y. Xie, J. Yin, J. Zheng, Y. Fan, J. Wu, and X. Zhang, Facile RbBr interface modification improves perovskite solar cell efficiency, Mater. Today Chem., 14(2019), art. No. 100179. doi: 10.1016/j.mtchem.2019.07.001
|
[14] |
W. Liu, N.J. Liu, S.L. Ji, H.F. Hua, Y.H. Ma, R.Y. Hu, J. Zhang, L. Chu, X.A. Li, and W. Huang, Perfection of perovskite grain boundary passivation by rhodium incorporation for efficient and stable solar cells, Nano Micro Lett., 12(2020), No. 1, art. No. 119. doi: 10.1007/s40820-020-00457-7
|
[15] |
J. Wang, M.C. Qin, H. Tao, W.J. Ke, Z. Chen, J.W. Wan, P.L. Qin, L.B. Xiong, H.W. Lei, H.Q. Yu, and G.J. Fang, Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer, Appl. Phys. Lett., 106(2015), No. 12, art. No. 121104. doi: 10.1063/1.4916345
|
[16] |
J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499(2013), No. 7458, p. 316. doi: 10.1038/nature12340
|
[17] |
T.S. Su, T.Y. Hsieh, C.Y. Hong, and T.C. Wei, Electrodeposited ultrathin TiO2 blocking layers for efficient perovskite solar cells, Sci. Rep., 5(2015), art. No. 16098. doi: 10.1038/srep16098
|
[18] |
W.J. Ke, G.J. Fang, J. Wang, P.L. Qin, H. Tao, H.W. Lei, Q. Liu, X. Dai, and X.Z. Zhao, Perovskite solar cell with an efficient TiO2 compact film, ACS Appl. Mater. Interfaces, 6(2014), No. 18, p. 15959. doi: 10.1021/am503728d
|
[19] |
F. Di Giacomo, V. Zardetto, A. D'Epifanio, S. Pescetelli, F. Matteocci, S. Razza, A. Di Carlo, S. Licoccia, W.M.M. Kessels, M. Creatore, and T.M. Brown, Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates, Adv. Energy Mater., 5(2015), No. 8, art. No. 1401808. doi: 10.1002/aenm.201401808
|
[20] |
S. Aharon, S. Gamliel, B. El Cohen, and L. Etgar, Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells, Phys. Chem. Chem. Phys., 16(2014), No. 22, p. 10512. doi: 10.1039/C4CP00460D
|
[21] |
Y.T. Fang, S.B. Zhai, L. Chu, and J.S. Zhong, Advances in halide perovskite memristor from lead-based to lead-free materials, ACS Appl. Mater. Interfaces, 13(2021), No. 15, p. 17141. doi: 10.1021/acsami.1c03433
|
[22] |
K. Domanski, J.P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate, M. Saliba, W. Tress, A. Hagfeldt, and M. Grätzel, Not all that glitters is gold: Metal-migration-induced degradation in perovskite solar cells, ACS Nano, 10(2016), No. 6, p. 6306. doi: 10.1021/acsnano.6b02613
|
[23] |
A.Y. Mei, X. Li, L.F. Liu, Z.L. Ku, T.F. Liu, Y.G. Rong, M. Xu, M. Hu, J.Z. Chen, Y. Yang, M. Grätzel, and H.W. Han, A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability, Science, 345(2014), No. 6194, p. 295. doi: 10.1126/science.1254763
|
[24] |
H. Hu, B.H. Dong, H.T. Hu, F.X. Chen, M.Q. Kong, Q.P. Zhang, T.Y. Luo, L. Zhao, Z.G. Guo, J. Li, Z.X. Xu, S.M. Wang, D. Eder, and L. Wan, Atomic layer deposition of TiO2 for a high-efficiency hole-blocking layer in hole-conductor-free perovskite solar cells processed in ambient air, ACS Appl. Mater. Interfaces, 8(2016), No. 28, p. 17999. doi: 10.1021/acsami.6b02701
|
[25] |
L. Chu, W. Liu, Z.F. Qin, R. Zhang, R.Y. Hu, J. Yang, J.P. Yang, and X.A. Li, Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes, Sol. Energy Mater. Sol. Cells, 178(2018), p. 164. doi: 10.1016/j.solmat.2018.01.010
|
[26] |
J.Y. Du, M.Q. Zhang, and J.J. Tian, Controlled crystal orientation of two-dimensional Ruddlesden-Popper halide perovskite films for solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 49. doi: 10.1007/s12613-021-2341-z
|
[27] |
H.Y. Zhang, R. Li, W.W. Liu, M. Zhang, and M. Guo, Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 387. doi: 10.1007/s12613-019-1748-2
|
[28] |
J.H. Lee, I.C. Leu, M.C. Hsu, Y.W. Chung, and M.H. Hon, Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach, J. Phys. Chem. B, 109(2005), No. 27, p. 13056. doi: 10.1021/jp052203l
|
[29] |
C.K. Xu, J.M. Wu, U.V. Desai, and D. Gao, High-efficiency solid-state dye-sensitized solar cells based on TiO2-coated ZnO nanowire arrays, Nano Lett., 12(2012), No. 5, p. 2420. doi: 10.1021/nl3004144
|
[30] |
B. Erdem, R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L. Dimonie, and M.S. El-Aasser, XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation, Langmuir, 17(2001), No. 9, p. 2664. doi: 10.1021/la0015213
|
[31] |
A. Orendorz, J. Wüsten, C. Ziegler, and H. Gnaser, Photoelectron spectroscopy of nanocrystalline anatase TiO2 films, Appl. Surf. Sci., 252(2005), No. 1, p. 85. doi: 10.1016/j.apsusc.2005.02.002
|
[32] |
E. McCafferty and J.P. Wightman, Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method, Surf. Interface Anal., 26(1998), No. 8, p. 549. doi: 10.1002/(SICI)1096-9918(199807)26:8<549::AID-SIA396>3.0.CO;2-Q
|
[33] |
K. Cao, Z.X. Zuo, J. Cui, Y. Shen, T. Moehl, S.M. Zakeeruddin, M. Grätzel, and M.K. Wang, Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture, Nano Energy, 17(2015), p. 171. doi: 10.1016/j.nanoen.2015.08.009
|
[34] |
N.J. Liu, L. Chu, W. Ahmad, R.Y. Hu, R.F. Luan, W. Liu, J. Yang, Y.H. Ma, and X.A. Li, Low-pressure treatment of CuSCN hole transport layers for enhanced carbon-based perovskite solar cells, J. Power Sources, 499(2021), art. No. 229970. doi: 10.1016/j.jpowsour.2021.229970
|
[35] |
Y.Z. Wu, X.D. Yang, H. Chen, K. Zhang, C.J. Qin, J. Liu, W.Q. Peng, A. Islam, E.B. Bi, F. Ye, M.S. Yin, P. Zhang, and L.Y. Han, Highly TiO2 compact films for efficient hole-blocking in perovskite solar cells, Appl. Phys. Express, 7(2014), No. 5, art. No. 052301. doi: 10.7567/APEX.7.052301
|
[36] |
P.J. Wang, Z.P. Shao, M. Ulfa, and T. Pauporté, Insights into the hole blocking layer effect on the perovskite solar cell performance and impedance response, J. Phys. Chem. C, 121(2017), No. 17, p. 9131. doi: 10.1021/acs.jpcc.7b00979
|