留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 12
Dec.  2022

图(7)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  1102
  • HTML全文浏览量:  408
  • PDF下载量:  50
  • 被引次数: 0
Yang Yu, Jianling Li, Guimei Han, Zhe Yang, Jianjian Zhong,  and Feiyu Kang, Optimize two-phase distribution of lithium-rich materials to stabilize structure and suppress voltage attenuation, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2201-2211. https://doi.org/10.1007/s12613-021-2362-7
Cite this article as:
Yang Yu, Jianling Li, Guimei Han, Zhe Yang, Jianjian Zhong,  and Feiyu Kang, Optimize two-phase distribution of lithium-rich materials to stabilize structure and suppress voltage attenuation, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2201-2211. https://doi.org/10.1007/s12613-021-2362-7
引用本文 PDF XML SpringerLink
研究论文

优化富锂材料亮相分布提高结构稳定性及抑制电压衰减

  • 通讯作者:

    李建玲    E-mail: lijianling@ustb.edu.cn

    韩桂梅    E-mail: hangui_mei@126.com

文章亮点

  • (1) 创新性地分布共沉淀可有效控制过渡金属的分布,从而控制本体中的相分布。
  • (2) 成功实施调相工程,在表面生成尖晶石相,显着抑制电压衰减。
  • (3) 通过各种表征详细研究了抑制电压衰减的机理。
  • 富锂材料虽然具有超高的比容量,但由于氧的氧化还原不完全可逆,因此会出现电压衰减和结构不稳定的现象。本文首次采用分布共沉淀的方法以通过控制过渡金属元素的分布来实现对两相分布的调控。经过检测发现成功的增加了颗粒内部中LiMO2(M = Ni、Co、Mn)相的含量以及颗粒表面Li2MnO3相的含量,并在表面形成了Li4Mn5O12尖晶石相。这使得材料表现出优异的电化学性能:LR(原始)在 1 C 500 圈循环后的放电比容量为 72.7 mAh⋅g−1,而GR(改性样品)的放电比容量仍为 137.5 mAh⋅g−1。在1 C循环220圈后,GR 的放电中压仍然保持在3 V以上。因此,通过调节两相的局部状态可以有效地稳定材料结构和抑制电压衰减。
  • Research Article

    Optimize two-phase distribution of lithium-rich materials to stabilize structure and suppress voltage attenuation

    + Author Affiliations
    • Lithium-rich materials possess the ultra-high specific capacity, but the redox of oxygen is not completely reversible, resulting in voltage attenuation and structural instability. A stepwise co-precipitation method is used for the first time in this paper to achieve the control of the two-phase distribution through controlling the distribution of transition metal elements and realize the modification of particle surface structure without the aid of heterologous ions. The results of characterization tests show that the content of LiMO2 phase inside the particles and the content of Li2MnO3 phase on the surface of the particles are successfully increased, and the surface induced formation of Li4Mn5O12 spinel phase or some disorderly ternary. The electrochemical performance of the modified sample is as follows: LR (pristine) shows specific discharge capacity of 72.7 mA·h·g−1 after 500 cycles at 1 C, while GR (modified sample) shows specific discharge capacity of 137.5 mA·h·g−1 at 1 C, and the discharge mid-voltage of GR still remains above 3 V when cycling to 220 cycles at 1 C (mid-voltage of LR remains above 3 V when cycling to 160 cycles at 1 C). Therefore, deliberately regulating the local state of the two phases is a successful way to reinforced the material structure and inhibition the voltage attenuation.
    • loading
    • [1]
      D.H. Seo, J. Lee, A. Urban, R. Malik, S. Kang, and G. Ceder, The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials, Nat. Chem., 8(2016), No. 7, p. 692. doi: 10.1038/nchem.2524
      [2]
      G. Ceder, Y.M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.I. Jang, and B. Huang, Identification of cathode materials for lithium batteries guided by first-principles calculations, Nature, 392(1998), No. 6677, p. 694. doi: 10.1038/33647
      [3]
      W.S. Yoon, K.B. Kim, M.G. Kim, M.K. Lee, H.J. Shin, J.M. Lee, J.S. Lee, and C.H. Yo, Oxygen contribution on Li-ion intercalation–deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy, J. Phys. Chem. B, 106(2002), No. 10, p. 2526. doi: 10.1021/jp013735e
      [4]
      Z.L. Chen, J. Li, and X.C. Zeng, Unraveling oxygen evolution in Li-rich oxides: A unified modeling of the intermediate peroxo/superoxo-like dimers, J. Am. Chem. Soc., 141(2019), No. 27, p. 10751. doi: 10.1021/jacs.9b03710
      [5]
      Z. Wang, X.Y. Lin, J.T. Zhang, D. Wang, C.Y. Ding, Y.M. Zhu, P. Gao, X.X. Huang, and G.W. Wen, Spherical layered Li-rich cathode material: Unraveling the role of oxygen vacancies on improving lithium ion conductivity, J. Power Sources, 462(2020), art. No. 228171. doi: 10.1016/j.jpowsour.2020.228171
      [6]
      M. Sathiya, G. Rousse, K. Ramesha, C.P. Laisa, H. Vezin, M.T. Sougrati, M.L. Doublet, D. Foix, D. Gonbeau, W. Walker, A.S. Prakash, M. Ben Hassine, L. Dupont, and J.M. Tarascon, Reversible anionic redox chemistry in high-capacity layered-oxide electrodes, Nat. Mater., 12(2013), No. 9, p. 827. doi: 10.1038/nmat3699
      [7]
      W. Lee, S. Yun, H. Li, J. Kim, H. Lee, K. Kwon, J.Y. Lee, Y.M. Choi, and W.S. Yoon, Anionic redox chemistry as a clue for understanding the structural behavior in layered cathode materials, Small, 16(2020), No. 5, art. No. e1905875. doi: 10.1002/smll.201905875
      [8]
      Y. Pei, Q. Chen, M.Y. Wang, B. Li, P. Wang, G. Henkelman, L. Zhen, G.Z. Cao, and C.Y. Xu, Reviving reversible anion redox in 3d-transition-metal Li rich oxides by introducing surface defects, Nano Energy, 71(2020), art. No. 104644. doi: 10.1016/j.nanoen.2020.104644
      [9]
      L.P. Wang, G. Chen, Q.X. Shen, G.M. Li, S.Y. Guan, and B. Li, Direct electrodeposition of ionic liquid-based template-free SnCo alloy nanowires as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1027. doi: 10.1007/s12613-018-1653-0
      [10]
      T. Fujita, H. Chen, K.T. Wang, C.L. He, Y.B. Wang, G. Dodbiba, and Y.Z. Wei, Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 179. doi: 10.1007/s12613-020-2127-8
      [11]
      R.A. House, U. Maitra, M.A. Pérez-Osorio, J.G. Lozano, L.Y. Jin, J.W. Somerville, L.C. Duda, A. Nag, A. Walters, K.J. Zhou, M.R. Roberts, and P.G. Bruce, Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes, Nature, 577(2020), No. 7791, p. 502. doi: 10.1038/s41586-019-1854-3
      [12]
      W. Zhang, Y.G. Sun, H.Q. Deng, J.M. Ma, Y. Zeng, Z.Q. Zhu, Z.S. Lv, H.R. Xia, X. Ge, S.K. Cao, Y. Xiao, S.B. Xi, Y.H. Du, A.M. Cao, and X.D. Chen, Dielectric polarization in inverse spinel-structured Mg2TiO4 coating to suppress oxygen evolution of Li-rich cathode materials, Adv. Mater., 32(2020), No. 19, art. No. 2000496. doi: 10.1002/adma.202000496
      [13]
      Z.K. Zhao, H.L. Xie, Z.Y. Wen, L. Liu, B.R. Wu, S. Chen, D.B. Mu, and C.X. Xie, Tuning Li3PO4 modification on the electrochemical performance of nickel-rich LiNi0.6Co0.2Mn0.2O2, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1488. doi: 10.1007/s12613-020-2232-8
      [14]
      L.B. Tang, Y. Liu, H.X. Wei, C. Yan, Z.J. He, Y.J. Li, and J.C. Zheng, Boosting cell performance of LiNi0.8Co0.1Mn0.1O2 cathode material via structure design, J. Energy Chem., 55(2021), p. 114. doi: 10.1016/j.jechem.2020.06.055
      [15]
      J.C. Zhang, F.Y. Cheng, S.L. Chou, J.L. Wang, L. Gu, H. Wang, H. Yoshikawa, Y. Lu, and J. Chen, Tuning oxygen redox chemistry in Li-rich Mn-based layered oxide cathodes by modulating cation arrangement, Adv. Mater., 31(2019), No. 42, art. No. 1901808. doi: 10.1002/adma.201901808
      [16]
      Y.F. Su, F.Y. Yuan, L. Chen, Y. Lu, J.Y. Dong, Y.Y. Fang, S. Chen, and F. Wu, Enhanced high-temperature performance of Li-rich layered oxide via surface heterophase coating, J. Energy Chem., 51(2020), p. 39. doi: 10.1016/j.jechem.2020.03.033
      [17]
      J. Fan, G. Li, B. Li, D. Zhang, D. Chen, and L. Li, Reconstructing the surface structure of Li-rich cathodes for high-energy lithium-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 22, p. 19950. doi: 10.1021/acsami.9b02827
      [18]
      Z.H. Sun, L.Q. Xu, C.Q. Dong, H.T. Zhang, M.T. Zhang, Y.F. Ma, Y.Y. Liu, Z.J. Li, Y. Zhou, Y. Han, and Y.S. Chen, A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance, Nano Energy, 63(2019), art. No. 103887. doi: 10.1016/j.nanoen.2019.103887
      [19]
      B. Qiu, M.H. Zhang, L.J. Wu, J. Wang, Y.G. Xia, D.N. Qian, H.D. Liu, S. Hy, Y. Chen, K. An, Y.M. Zhu, Z.P. Liu, and Y.S. Meng, Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries, Nat. Commun., 7(2016), art. No. 12108. doi: 10.1038/ncomms12108
      [20]
      D.Z. Xie, W.S. Zhou, K.S. Lin, C. Hu, P.M. Zheng, X.H. Hou, and K.H. Lam, Doping effect of fluoride anion on microstructural and electrochemical properties of lithium-rich cathode materials, Mater. Lett., 253(2019), p. 82. doi: 10.1016/j.matlet.2019.06.047
      [21]
      R.P. Qing, J.L. Shi, D.D. Xiao, X.D. Zhang, Y.X. Yin, Y.B. Zhai, L. Gu, and Y.G. Guo, Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping, Adv. Energy Mater., 6(2016), No. 6, art. No. 1501914. doi: 10.1002/aenm.201501914
      [22]
      Y.C. Liu, J. Wang, J.W. Wu, Z.Y. Ding, P.H. Yao, S.L. Zhang, and Y.N. Chen, 3D cube-maze-like Li-rich layered cathodes assembled from 2D porous nanosheets for enhanced cycle stability and rate capability of lithium-ion batteries, Adv. Energy Mater., 10(2020), No. 5, art. No. 1903139. doi: 10.1002/aenm.201903139
      [23]
      J.X. Liu, J.Q. Wang, Y.X. Ni, Y.D. Zhang, J. Luo, F.Y. Cheng, and J. Chen, Spinel/lithium-rich manganese oxide hybrid nanofibers as cathode materials for rechargeable lithium-ion batteries, Small Methods, 3(2019), No. 12, art. No. 1900350. doi: 10.1002/smtd.201900350
      [24]
      Y. Chen, Y.B. Niu, C. Lin, J.X. Li, Y.B. Lin, G.G. Xu, R.E. Palmer, and Z.G. Huang, Insight into the intrinsic mechanism of improving electrochemical performance via constructing the preferred crystal orientation in lithium cobalt dioxide, Chem. Eng. J., 399(2020), art. No. 125708. doi: 10.1016/j.cej.2020.125708
      [25]
      X.K. Ju, X. Hou, Z.Q. Liu, H.F. Zheng, H. Huang, B.H. Qu, T.H. Wang, Q.H. Li, and J. Li, The full gradient design in Li-rich cathode for high performance lithium ion batteries with reduced voltage decay, J. Power Sources, 437(2019), art. No. 226902. doi: 10.1016/j.jpowsour.2019.226902
      [26]
      M. Xu, L. Fei, W. Zhang, T. Li, W. Lu, N. Zhang, Y. Lai, Z. Zhang, J. Fang, K. Zhang, J. Li, and H. Huang, Tailoring anisotropic Li-ion transport tunnels on orthogonally arranged Li-rich layered oxide nanoplates toward high-performance Li-ion batteries, Nano Lett., 17(2017), No. 3, p. 1670. doi: 10.1021/acs.nanolett.6b04951
      [27]
      X. Li, Y. Qiao, S.H. Guo, K.Z. Jiang, M. Ishida, and H.S. Zhou, A new type of Li-rich rock-salt oxide Li2Ni1/3Ru2/3O3 with reversible anionic redox chemistry, Adv. Mater., 31(2019), No. 11, art. No. 1807825. doi: 10.1002/adma.201807825
      [28]
      C.H. Shen, Q. Wang, F. Fu, L. Huang, Z. Lin, S.Y. Shen, H. Su, X.M. Zheng, B.B. Xu, J.T. Li, and S.G. Sun, Facile synthesis of the Li-rich layered oxide Li1.23Ni0.09Co0.12Mn0.56O2 with superior lithium storage performance and new insights into structural transformation of the layered oxide material during charge–discharge cycle: In situ XRD characterization, ACS Appl. Mater. Interfaces, 6(2014), No. 8, p. 5516. doi: 10.1021/am405844b
      [29]
      P.Y. Hou, L. Xu, J.S. Song, D.W. Song, X.X. Shi, X.Q. Wang, and L.Q. Zhang, A high energy density Li-rich positive-electrode material with superior performances via a dual chelating agent co-precipitation route, J. Mater. Chem. A, 3(2015), No. 18, p. 9427. doi: 10.1039/C5TA01184A
      [30]
      C.X. Zhang, Y.Z. Feng, B. Wei, C.P. Liang, L.J. Zhou, D.G. Ivey, P. Wang, and W.F. Wei, Heteroepitaxial oxygen-buffering interface enables a highly stable cobalt-free Li-rich layered oxide cathode, Nano Energy, 75(2020), art. No. 104995. doi: 10.1016/j.nanoen.2020.104995
      [31]
      W.H. Ryu, D.H. Kim, S.H. Kang, and H.S. Kwon, Electrochemical properties of nanosized Li-rich layered oxide as positive electrode materials for Li-Ion batteries, RSC Adv., 3(2013), No. 22, art. No. 8527. doi: 10.1039/c3ra40377g
      [32]
      P.F. Liu, H. Zhang, W. He, T.F. Xiong, Y. Cheng, Q.S. Xie, Y.T. Ma, H.F. Zheng, L.S. Wang, Z.Z. Zhu, Y. Peng, L.Q. Mai, and D.L. Peng, Lithium deficiencies engineering in Li-rich layered oxide Li1.098Mn0.533Ni0.113Co0.138O2 for high-stability cathode, J. Am. Chem. Soc., 141(2019), No. 27, p. 10876. doi: 10.1021/jacs.9b04974
      [33]
      W. Zhu, Z.G. Tai, C.Y. Shu, S.K. Chong, S.W. Guo, L.J. Ji, Y.Z. Chen, and Y.N. Liu, The superior electrochemical performance of a Li-rich layered cathode material with Li-rich spinel Li4Mn5O12 and MgF2 double surface modifications, J. Mater. Chem. A, 8(2020), No. 16, p. 7991. doi: 10.1039/D0TA00355G
      [34]
      R. Baddour-Hadjean and J.P. Pereira-Ramos, Raman microspectrometry applied to the study of electrode materials for lithium batteries, Chem. Rev., 110(2010), No. 3, p. 1278. doi: 10.1021/cr800344k
      [35]
      H.C. Guo, Z. Wei, K. Jia, B. Qiu, C. Yin, F.Q. Meng, Q.H. Zhang, L. Gu, S.J. Han, Y. Liu, H. Zhao, W. Jiang, H.F. Cui, Y.G. Xia, and Z.P. Liu, Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials, Energy Storage Mater., 16(2019), p. 220. doi: 10.1016/j.ensm.2018.05.022
      [36]
      D.Y.W. Yu and K. Yanagida, Structural analysis of Li2MnO3 and related Li–Mn–O materials, J. Electrochem. Soc., 158(2011), No. 9, art. No. A1015. doi: 10.1149/1.3609849
      [37]
      X.D. Zhang, J.L. Shi, J.Y. Liang, Y.X. Yin, J.N. Zhang, X.Q. Yu, and Y.G. Guo, Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating, Adv. Mater., 30(2018), No. 29, art. No. 1801751. doi: 10.1002/adma.201801751
      [38]
      J.Y. He, H.Y. Ma, H.Z. Zhang, D.W. Song, X.X. Shi, Q.B. Deng, C.L. Li, L.F. Jiao, and L.Q. Zhang, Promoting the electrochemical performance of Li-rich layered Li1.2(Ni1/6Co1/6Mn4/6)0.8O2 with the in situ transformed allogenic spinel phase, ACS Sustainable Chem. Eng., 8(2020), No. 5, p. 2215. doi: 10.1021/acssuschemeng.9b05664
      [39]
      W. Jin, S. Myeong, J. Hwang, H. Jang, J. Sung, Y. Yoo, M.G. Kim, and J. Cho, Unraveling the rapid redox behavior of Li-excess 3d-transition metal oxides for high rate capability, Adv. Energy Mater., 10(2020), No. 17, art. No. 1904092. doi: 10.1002/aenm.201904092
      [40]
      Y. Liu, Z.Y. Wang, H.X. Zhuo, S.G. Lu, and W.D. Zhuang, Heating-temperature-dependent electrochemical-performance-enhanced surface structural evolution during chemical treatment of Li-rich layered material by sodium thiosulfate, J. Power Sources, 455(2020), art. No. 227795. doi: 10.1016/j.jpowsour.2020.227795
      [41]
      Y. Yu, Z. Yang, J.J. Zhong, Y.Y. Liu, J.L. Li, X.D. Wang, and F.Y. Kang, A simple dual-ion doping method for stabilizing Li-rich materials and suppressing voltage decay, ACS Appl. Mater. Interfaces, 12(2020), No. 12, p. 13996. doi: 10.1021/acsami.0c00944
      [42]
      S.J. Shi, S.S. Zhang, Z.J. Wu, T. Wang, J.B. Zong, M.X. Zhao, and G. Yang, Full microwave synthesis of advanced Li-rich manganese based cathode material for lithium ion batteries, J. Power Sources, 337(2017), p. 82. doi: 10.1016/j.jpowsour.2016.10.107
      [43]
      Z.Y. Gu, J.Z. Guo, X.X. Zhao, X.T. Wang, D. Xie, Z.H. Sun, C.D. Zhao, H.J. Liang, W.H. Li, and X.L. Wu, High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries, InfoMat, 3(2021), No. 6, p. 694. doi: 10.1002/inf2.12184
      [44]
      W.H. Li, H.J. Liang, X.K. Hou, Z.Y. Gu, X.X. Zhao, J.Z. Guo, X. Yang, and X.L. Wu, Feasible engineering of cathode electrolyte interphase enables the profoundly improved electrochemical properties in dual-ion battery, J. Energy Chem., 50(2020), p. 416. doi: 10.1016/j.jechem.2020.03.043
      [45]
      H.Y. Wang, X. Cheng, X.F. Li, J.M. Pan, and J.H. Hu, Coupling effect of the conductivities of Li ions and electrons by introducing LLTO@C fibers in the LiNi0.8Co0.15Al0.05O2 cathode, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 305. doi: 10.1007/s12613-020-2145-6

    Catalog


    • /

      返回文章
      返回