留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 6
Jun.  2022

图(7)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  3666
  • HTML全文浏览量:  1347
  • PDF下载量:  140
  • 被引次数: 0
Fangyi Zhao, Zhen Song,  and Quanlin Liu, Novel Cr3+-activated far-red emitting phosphors with β-Ca3(PO4)2-type structure for indoor plant cultivation, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1286-1294. https://doi.org/10.1007/s12613-021-2363-6
Cite this article as:
Fangyi Zhao, Zhen Song,  and Quanlin Liu, Novel Cr3+-activated far-red emitting phosphors with β-Ca3(PO4)2-type structure for indoor plant cultivation, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1286-1294. https://doi.org/10.1007/s12613-021-2363-6
引用本文 PDF XML SpringerLink
研究论文

新型Cr3+激活的远红光荧光粉

  • 通讯作者:

    宋振    E-mail: zsong@ustb.edu.cn

    刘泉林    E-mail: qlliu@ustb.edu.cn

文章亮点

  • (1) 报道了一系列Cr3+激活的β-Ca3(PO4)2结构的远红光-近红外发光材料Ca9Ga(PO4)7:Cr3+ (M = Al, Ga, Sc, In, Lu, Y)。
  • (2)Ca9Ga(PO4)7:Cr3+远红光荧光粉具有高的内量子效率值以及优异的热稳定性。
  • (3) Ca9Ga(PO4)7:Cr3+远红光荧光粉有望用于室内植物种植领域。
  • 远红光和近红外光谱在食品分析、植物生长、夜视、生物成像、安全监控、虹膜识别等领域具有广泛的应用价值,近年来对远红光和近红外荧光粉的研究获得了越来越多的关注。本文采用高温固相法合成了一系列Cr3+激活的β-Ca3(PO4)2结构的远红光-近红外发光材料Ca9M(PO4)7:Cr3+ (M = Al, Ga, Sc, In, Lu, Y),并对这一系列样品进行了XRD、光谱、紫外漫反射及扫描电镜测试。随着M3+离子类型由半径较小的Al3+变为半径较大的Y3+,发射光谱由694 nm红移至795 nm;由于M3+离子半径的增加为Cr3+离子提供了更为宽松的八面体环境,晶体场强度降低,从而引起发射光谱的红移。其中,当M3+离子为Ga3+时发射光谱强度最大,在440 nm蓝光激发下,该荧光粉可呈现出峰位在735 nm的宽带远红光发射,发射范围从650 nm到850 nm,并在690 nm和698 nm处呈现出两个尖锐的R线发射。Ca9Ga0.97 (PO4)7:0.03Cr3+荧光粉的内量子效率达到55.7%;且该样品具有优异的发光热稳定性能,在423 K时发射光谱的强度仍可保持室温的68.5%。由于Ca9Ga(PO4)7:Cr3+荧光粉的发射光谱与植物远红光光敏色素PFR的吸收光谱存在很大的光谱重叠,通过搭配450 nm蓝光芯片进行封装所得到的LED器件有望用于室内植物种植领域,从而促进植物生长。
  • Research Article

    Novel Cr3+-activated far-red emitting phosphors with β-Ca3(PO4)2-type structure for indoor plant cultivation

    + Author Affiliations
    • Cr3+-activated far-red and near-infrared phosphors have drawn considerable attention owing to their adjustable emission wavelengths and wide applications. Herein, we reported a series of Cr3+-doped phosphors with β-Ca3(PO4)2-type structure, of which Ca9Ga(PO4)7:Cr3+ possessed the highest far-red emission intensity. At an excitation of 440 nm, the Ca9Ga(PO4)7:Cr3+ phosphors exhibited a broad emission band ranging from 650 to 850 nm and peaking at 735 nm, and the broadband superimposed two sharp lines centering at 690 and 698 nm. The optimal sample Ca9Ga0.97(PO4)7:0.03Cr3+ had an internal quantum efficiency of 55.7%. The luminescence intensity of the Ca9Ga0.97(PO4)7:0.03Cr3+ phosphor obtained at 423 K could maintain 68.5% of that at room temperature, demonstrating its outstanding luminescence thermal stability. A phosphor-conversion light-emitting diode was fabricated, indicating that the Ca9Ga(PO4)7:Cr3+ phosphor has potential applications in indoor plant cultivation.
    • loading
    • [1]
      S.Y. Wang, Q. Sun, B. Devakumar, L.L. Sun, J. Liang, and X.Y. Huang, Novel SrMg2La2W2O12:Mn4+ far-red phosphors with high quantum efficiency and thermal stability towards applications in indoor plant cultivation LEDs, RSC Adv., 8(2018), No. 53, p. 30191. doi: 10.1039/C8RA06134C
      [2]
      X.Y. Huang and H. Guo, Finding a novel highly efficient Mn4+-activated Ca3La2W2O12 far-red emitting phosphor with excellent responsiveness to phytochrome PFR: Towards indoor plant cultivation application, Dyes Pigm., 152(2018), p. 36. doi: 10.1016/j.dyepig.2018.01.022
      [3]
      R.P. Cao, Z.H. Shi, G.J. Quan, T. Chen, S.L. Guo, Z.F. Hu, and P. Liu, Preparation and luminescence properties of Li2MgZrO4: Mn4+ red phosphor for plant growth, J. Lumin., 188(2017), p. 577. doi: 10.1016/j.jlumin.2017.05.002
      [4]
      J. Liang, L.L. Sun, B. Devakumar, S.Y. Wang, Q. Sun, H. Guo, B. Li, and X.Y. Huang, Far-red-emitting double-perovskite CaLaMgSbO6:Mn4+ phosphors with high photoluminescence efficiency and thermal stability for indoor plant cultivation LEDs, RSC Adv., 8(2018), No. 55, p. 31666. doi: 10.1039/C8RA06708B
      [5]
      D. von Wettstein, S. Gough, and C.G. Kannangara, Chlorophyll biosynthesis, Plant Cell, 7(1995), No. 7, art. No. 1039. doi: 10.2307/3870056
      [6]
      G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breive, R. Ulinskaite, A. Brazaityte, A. Novičkovas, and A. Žukauskas, High-power light-emitting diode based facility for plant cultivation, J. Phys. D: Appl. Phys., 38(2005), No. 17, p. 3182. doi: 10.1088/0022-3727/38/17/S20
      [7]
      R.A. Sharrock, The phytochrome red/far-red photoreceptor superfamily, Genome Biol., 9(2008), No. 8, p. 230. doi: 10.1186/gb-2008-9-8-230
      [8]
      L. Li, Y.X. Pan, Y. Huang, S.M. Huang, and M.M. Wu, Dual-emissions with energy transfer from the phosphor Ca14Al10Zn6O35:Bi3+,Eu3+ for application in agricultural lighting, J. Alloys Compd., 724(2017), p. 735. doi: 10.1016/j.jallcom.2017.07.047
      [9]
      J.Y. Chen, C.F. Guo, Z. Yang, T. Li, and J. Zhao, Li2SrSiO4: Ce3+, Pr3+ phosphor with blue, red, and near-infrared emissions used for plant growth LED, J. Am. Ceram. Soc., 99(2016), No. 1, p. 218. doi: 10.1111/jace.13952
      [10]
      Z.L. Chen, K. Liu, X.Y. Yuan, and K.X. Chen, Luminescence properties of nitrogen-rich Ca-SiAlON:Eu2+ phosphors prepared by freeze-drying assisted combustion synthesis, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 687. doi: 10.1007/s12613-019-1934-2
      [11]
      F. Unal, F. Kaya, and K. Kazmanli, Synthesis, characterization and radioluminescence properties of erbium-doped yttria phosphors, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1983. doi: 10.1007/s12613-021-2269-3
      [12]
      J. Liang, L.L. Sun, B. Devakumar, S.Y. Wang, Q. Sun, H. Guo, B. Li, and X.Y. Huang, Novel Mn4+-activated LiLaMgWO6 far-red emitting phosphors: High photoluminescence efficiency, good thermal stability, and potential applications in plant cultivation LEDs, RSC Adv., 8(2018), No. 48, p. 27144. doi: 10.1039/C8RA05669B
      [13]
      K.A. Franklin and P.H. Quail, Phytochrome functions in Arabidopsis development, J. Exp. Bot., 61(2010), No. 1, p. 11. doi: 10.1093/jxb/erp304
      [14]
      L. Shi, S. Wang, Y.J. Han, Z.X. Ji, D. Ma, Z.F. Mu, Z.Y. Mao, D.J. Wang, Z.W. Zhang, and L. Liu, Sr2LaSbO6:Mn4+ far-red phosphor for plant cultivation: Synthesis, luminescence properties and emission enhancement by Al3+ ions, J. Lumin., 221(2020), art. No. 117091. doi: 10.1016/j.jlumin.2020.117091
      [15]
      Z.W. Zhou, J.M. Zheng, R. Shi, N.M. Zhang, J.Y. Chen, R.Y. Zhang, H. Suo, E.M. Goldys, and C.F. Guo, Ab initio site occupancy and far-red emission of Mn4+ in cubic-phase La(MgTi)1/2O3 for plant cultivation, ACS Appl. Mater. Interfaces, 9(2017), No. 7, p. 6177. doi: 10.1021/acsami.6b15866
      [16]
      K. Li, H.Z. Lian, R. van Deun, and M.G. Brik, A far-red-emitting NaMgLaTeO6:Mn4+ phosphor with perovskite structure for indoor plant growth, Dyes Pigm., 162(2019), p. 214. doi: 10.1016/j.dyepig.2018.09.084
      [17]
      K. Li and R. van Deun, Novel intense emission-tunable Li1.5La1.5WO6:Mn4+,Nd3+,Yb3+ material with good luminescence thermal stability for potential applications in c-Si solar cells and plant-cultivation far-red-NIR LEDs, ACS Sustainable Chem. Eng., 7(2019), No. 19, p. 16284. doi: 10.1021/acssuschemeng.9b03308
      [18]
      L. Shi, Y.J. Han, H.X. Wang, D.C. Shi, X.Y. Geng, and Z.W. Zhang, High-efficiency and thermally stable far-red emission of Mn4+ in double cubic perovskite Sr9Y2W4O24 for plant cultivation, J. Lumin., 208(2019), p. 307. doi: 10.1016/j.jlumin.2018.12.065
      [19]
      Y.J. Zheng, H.M. Zhang, H.R. Zhang, Z.G. Xia, Y.L. Liu, M.S. Molokeev, and B.F. Lei, Co-substitution in Ca1–xYxAl12–xMgxO19 phosphors: Local structure evolution, photoluminescence tuning and application for plant growth LEDs, J. Mater. Chem. C, 6(2018), No. 15, p. 4217. doi: 10.1039/C8TC00165K
      [20]
      B.B. Su, M.Z. Li, E.H. Song, and Z.G. Xia, Sb3+-doping in cesium zinc halides single crystals enabling high-efficiency near-infrared emission, Adv. Funct. Mater., 31(2021), No. 40, art. No. 2105316. doi: 10.1002/adfm.202105316
      [21]
      J.W. Qiao, G.J. Zhou, Y.Y. Zhou, Q.Y. Zhang, and Z.G. Xia, Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes, Nat. Commun., 10(2019), art. No. 5267. doi: 10.1038/s41467-019-13293-0
      [22]
      M.H. Fang, G.N.A. de Guzman, Z. Bao, N. Majewska, S. Mahlik, M. Grinberg, G. Leniec, S.M. Kaczmarek, C.W. Yang, K.M. Lu, H.S. Sheu, S.F. Hu, and R.S. Liu, Ultra-high-efficiency near-infrared Ga2O3:Cr3+ phosphor and controlling of phytochrome, J. Mater. Chem. C, 8(2020), No. 32, p. 11013. doi: 10.1039/D0TC02705G
      [23]
      S.Q. Liu, Z.Z. Wang, H. Cai, Z. Song, and Q.L. Liu, Highly efficient near-infrared phosphor LaMgGa11O19:Cr3+, Inorg. Chem. Front., 7(2020), No. 6, p. 1467. doi: 10.1039/D0QI00063A
      [24]
      D.C. Huang, H.M. Zhu, Z.H. Deng, H.Y. Yang, J. Hu, S.S. Liang, D.J. Chen, E. Ma, and W. Guo, A highly efficient and thermally stable broadband Cr3+-activated double borate phosphor for near-infrared light-emitting diodes, J. Mater. Chem. C, 9(2021), No. 1, p. 164. doi: 10.1039/D0TC04803H
      [25]
      L.Q. Yao, Q.Y. Shao, S.Y. Han, C. Liang, J.H. He, and J.Q. Jiang, Enhancing near-infrared photoluminescence intensity and spectral properties in Yb3+ codoped LiScP2O7:Cr3+, Chem. Mater., 32(2020), No. 6, p. 2430.[LinkOut]. doi: 10.1021/acs.chemmater.9b04934
      [26]
      J. Zhou, Z.G. Xia, X. Li, X.Y. Yun, J.Y. Sun, and D.H. Xu, A novel near-infrared LiGaW2O8:Yb3+,Cr3+ up-conversion phosphor with enhanced luminescence intensity based on Ho3+/Er3+ bridges, J. Mater. Chem. C, 8(2020), No. 35, p. 12189. doi: 10.1039/D0TC02963G
      [27]
      H.T. Zeng, T.L. Zhou, L. Wang, and R.J. Xie, Two-site occupation for exploring ultra-broadband near-infrared phosphor—double-perovskite La2MgZrO6:Cr3+, Chem. Mater., 31(2019), No. 14, p. 5245. doi: 10.1021/acs.chemmater.9b01587
      [28]
      X.F. Zhou, W.Y. Geng, J.Y. Li, Y.C. Wang, J.Y. Ding, and Y.H. Wang, An ultraviolet–visible and near-infrared-responded broadband NIR phosphor and its NIR spectroscopy application, Adv. Opt. Mater., 8(2020), No. 8, art. No. 1902003. doi: 10.1002/adom.201902003
      [29]
      X.X. Xu, Q.Y. Shao, L.Q. Yao, Y. Dong, and J.Q. Jiang, Highly efficient and thermally stable Cr3+-activated silicate phosphors for broadband near-infrared LED applications, Chem. Eng. J., 383(2020), art. No. 123108. doi: 10.1016/j.cej.2019.123108
      [30]
      T.Y. Liu, H. Cai, N. Mao, Z. Song, and Q.L. Liu, Efficient near-infrared pyroxene phosphor LiInGe2O6:Cr3+ for NIR spectroscopy application, J. Am. Ceram. Soc., 104(2021), No. 9, p. 4577. doi: 10.1111/jace.17856
      [31]
      L.L. Zhang, S. Zhang, Z.D. Hao, X. Zhang, G.H. Pan, Y.S. Luo, H.J. Wu, and J.H. Zhang, A high efficiency broad-band near-infrared Ca2LuZr2Al3O12:Cr3+ garnet phosphor for blue LED chips, J. Mater. Chem. C, 6(2018), No. 18, p. 4967. doi: 10.1039/C8TC01216D
      [32]
      H. Cai, S.Q. Liu, Z. Song, and Q.L. Liu, Tuning luminescence from NIR-I to NIR-II in Cr3+-doped olivine phosphors for nondestructive analysis, J. Mater. Chem. C, 9(2021), No. 16, p. 5469. doi: 10.1039/D1TC00521A
      [33]
      F.Y. Zhao, Z. Song, J. Zhao, and Q.L. Liu, Double perovskite Cs2AgInCl6:Cr3+: Broadband and near-infrared luminescent materials, Inorg. Chem. Front., 6(2019), No. 12, p. 3621. doi: 10.1039/C9QI00905A
      [34]
      F.Y. Zhao, H. Cai, Z. Song, and Q.L. Liu, Structural confinement for Cr3+ activators toward efficient near-infrared phosphors with suppressed concentration quenching, Chem. Mater., 33(2021), No. 10, p. 3621. doi: 10.1021/acs.chemmater.1c00441
      [35]
      X.Q. Zhou, J.W. Qiao, and Z.G. Xia, Learning from mineral structures toward new luminescence materials for light-emitting diode applications, Chem. Mater., 33(2021), No. 4, p. 1083. doi: 10.1021/acs.chemmater.1c00032
      [36]
      T. Roisnel and J. Rodríquez-Carvajal, WinPLOTR: A windows tool for powder diffraction pattern analysis, Mater. Sci. Forum, 378-381(2001), p. 118. doi: 10.4028/www.scientific.net/MSF.378-381.118
      [37]
      M.Y. Chen, Z.G. Xia, M.S. Molokeev, T. Wang, and Q.L. Liu, Tuning of photoluminescence and local structures of substituted cations in xSr2Ca(PO4)2–(1−x)Ca10Li(PO4)7:Eu2+ phosphors, Chem. Mater., 29(2017), No. 3, p. 1430. doi: 10.1021/acs.chemmater.7b00006
      [38]
      M. Yashima, A. Sakai, T. Kamiyama, and A. Hoshikawa, Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction, J. Solid State Chem., 175(2003), No. 2, p. 272. doi: 10.1016/S0022-4596(03)00279-2
      [39]
      R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A, 32(1976), No. 5, p. 751. doi: 10.1107/S0567739476001551
      [40]
      X.J. Kang, C.Y. Jia, H.C. Wang, Y.S. Xiao, and W. Lü, Structural, tunable emission and energy transfer of Ca9In(PO4)7:Ce3+, Tb3+/Dy3+ phosphors, Mater. Chem. Phys., 240(2020), art. No. 122239. doi: 10.1016/j.matchemphys.2019.122239
      [41]
      J. Zhou, X.M. Rong, P. Zhang, M.S. Molokeev, P.J. Wei, Q.L. Liu, X.W. Zhang, and Z.G. Xia, Manipulation of Bi3+/In3+ transmutation and Mn2+-doping effect on the structure and optical properties of double perovskite Cs2NaBi1−xInxCl6, Adv. Opt. Mater., 7(2019), No. 8, art. No. 1801435. doi: 10.1002/adom.201801435
      [42]
      B. Malysa, A. Meijerink, and T. Jüstel, Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La), J. Lumin., 202(2018), p. 523. doi: 10.1016/j.jlumin.2018.05.076
      [43]
      G.N.A. de Guzman, V. Rajendran, Z. Bao, et al., Multi-site cation control of ultra-broadband near-infrared phosphors for application in light-emitting diodes, Inorg. Chem., 59(2020), No. 20, p. 15101. doi: 10.1021/acs.inorgchem.0c02055
      [44]
      E.T. Basore, W.G. Xiao, X.F. Liu, J.H. Wu, and J.R. Qiu, Broadband near-infrared garnet phosphors with near-unity internal quantum efficiency, Adv. Opt. Mater., 8(2020), No. 12, art. No. 2000296. doi: 10.1002/adom.202000296
      [45]
      A. Zabiliūtė, S. Butkutė, A. Žukauskas, P. Vitta, and A. Kareiva, Sol–gel synthesized far-red chromium-doped garnet phosphors for phosphor-conversion light-emitting diodes that meet the photomorphogenetic needs of plants, Appl. Opt., 53(2014), No. 5, art. No. 907. doi: 10.1364/AO.53.000907
      [46]
      S.Q. Liu, H. Cai, S.Y. Zhang, Z. Song, Z.G. Xia, and Q.L. Liu, Site engineering strategy toward enhanced luminescence thermostability of a Cr3+-doped broadband NIR phosphor and its application, Mater. Chem. Front., 5(2021), No. 10, p. 3841. doi: 10.1039/D1QM00074H
      [47]
      N. Mao, S.Q. Liu, Z. Song, Y. Yu, and Q.L. Liu, A broadband near-infrared phosphor Ca3Y2Ge3O12:Cr3+ with garnet structure, J. Alloys Compd., 863(2021), art. No. 158699. doi: 10.1016/j.jallcom.2021.158699
      [48]
      B. Henderson and G.F. Imbusch, Optical Spectroscopy of Inorganic Solids, Oxford University Press, New York, 1989, p. 410.
      [49]
      M. Zhao, S.Q. Liu, H. Cai, F.Y. Zhao, Z. Song, and Q.L. Liu, Efficient broadband near-infrared phosphor Sr2ScSbO6:Cr3+ for solar-like lighting, China Mater, (2021). DOI: 10.1007/s40843-021-1785-6
      [50]
      A. Trueba, J.M. García-Lastra, P. Garcia-Fernandez, J.A. Aramburu, M.T. Barriuso, and M. Moreno, Cr3+-doped fluorides and oxides: Role of internal fields and limitations of the Tanabe–Sugano approach, J. Phys. Chem. A, 115(2011), No. 46, p. 13399. doi: 10.1021/jp207249w
      [51]
      B. Malysa, A. Meijerink, and T. Jüstel, Temperature dependent photoluminescence of Cr3+ doped Sr8MgLa(PO4)7, Opt. Mater., 85(2018), p. 341. doi: 10.1016/j.optmat.2018.09.001

    Catalog


    • /

      返回文章
      返回