留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 7
Jul.  2022

图(7)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1664
  • HTML全文浏览量:  338
  • PDF下载量:  70
  • 被引次数: 0
Zhuoran Zeng, Mingzhe Bian, Shiwei Xu, Weineng Tang, Chris Davies, Nick Birbilis, and Jianfeng Nie, Optimisation of alloy composition for highly-formable magnesium sheet, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1388-1395. https://doi.org/10.1007/s12613-021-2365-4
Cite this article as:
Zhuoran Zeng, Mingzhe Bian, Shiwei Xu, Weineng Tang, Chris Davies, Nick Birbilis, and Jianfeng Nie, Optimisation of alloy composition for highly-formable magnesium sheet, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1388-1395. https://doi.org/10.1007/s12613-021-2365-4
引用本文 PDF XML SpringerLink
研究论文

高成形性镁合金板材的成分优化

  • 通讯作者:

    曾卓然    E-mail: zhuoran.zeng@anu.edu.au

    徐世伟    E-mail: xushiwei@hnu.edu.cn

    聂建峰    E-mail: jianfeng.nie@monash.edu

文章亮点

  • (1) 系统研究了微合金化Mg–Zn–Zr的力学性能。
  • (2) 揭示了Mg–Zn体系板材中钆和钙的微量共同添加提高成形性的作用机制。
  • (3) 展示了微合金元素晶界偏聚对晶界韧性的影响规律。
  • 镁是最轻的金属结构材料。然而,镁合金板材具有织构强,室温成形性差的瓶颈难题,限制其广泛应用。虽然研究发现在Mg–Zn–Zr合金体系同添加钙或钆能弱化织构,提高成形性,但这两种元素添加后对的效果尚未有过系统比较和研究。本文旨在展现微合金添加钆和钙对于显微结构和力学性能的影响规律。本文发现,Mg–Zn–Gd–Zr 与 Mg–Zn–Ca–Zr轧板有类似的弱织构,但是Mg–Zn–Gd–Zr轧板的延伸率和成形性高于Mg–Zn–Ca–Zr。当在Mg–1Zn–0.5Zr合金中添加0.4wt%钆、0.2wt%钙时能获得最高的室温延伸率,其深冲成形性可以和铝合金板材6016相媲美。当钙的含量从0.2wt%提升至0.5wt%后,合金板材的延伸率与成形性下降,其主要原因是钙的过量添加导致了晶界脆化,降低了晶界韧性从而裂纹容易从晶界处萌生并扩展。

  • Research Article

    Optimisation of alloy composition for highly-formable magnesium sheet

    + Author Affiliations
    • The effectiveness of Ca or Gd addition on ductility and formability of Mg–Zn–Zr based dilute alloys in deep drawing has not been systematically compared previously. In this study, formable Mg–Zn–Gd–Zr and Mg–Zn–Ca–Zr sheet alloys are produced by hot rolling. These sheets have similarly weakened basal texture, but the sheet of the Mg–Zn–Gd–Zr alloys has higher ductility and formability than that of Mg–Zn–Ca–Zr alloys. The combined addition of 0.2wt% Ca and 0.4wt% Gd to the Mg–1Zn–0.5Zr (wt%) alloy leads to a Mg–1Zn–0.4Gd–0.2Ca–0.5Zr alloy that has even better ductility, and its formability during deep drawing is comparable to the benchmark Al6016 sheet. An increase in Ca content from 0.2wt% to 0.5wt% leads to decreased sheet ductility and formability, predominantly due to grain boundary embrittlement.

    • loading
    • [1]
      W.J. Joost and P.E. Krajewski, Towards magnesium alloys for high-volume automotive applications, Scripta Mater., 128(2017), p. 107. doi: 10.1016/j.scriptamat.2016.07.035
      [2]
      T.M. Pollock, Weight loss with magnesium alloys, Science, 328(2010), No. 5981, p. 986. doi: 10.1126/science.1182848
      [3]
      S. Yi, J. Bohlen, F. Heinemann, and D. Letzig, Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets, Acta Mater., 58(2010), No. 2, p. 592. doi: 10.1016/j.actamat.2009.09.038
      [4]
      N. Stanford and M. Barnett, Effect of composition on the texture and deformation behaviour of wrought Mg alloys, Scripta Mater., 58(2008), No. 3, p. 179. doi: 10.1016/j.scriptamat.2007.09.054
      [5]
      Y. Chino and M. Mabuchi, Enhanced stretch formability of Mg–Al–Zn alloy sheets rolled at high temperature (723 K), Scripta Mater., 60(2009), No. 6, p. 447. doi: 10.1016/j.scriptamat.2008.11.029
      [6]
      B.C. Suh, M.S. Shim, K.S. Shin, and N.J. Kim, Current issues in magnesium sheet alloys: Where do we go from here? Scripta Mater., 84-85(2014), p. 1. doi: 10.1016/j.scriptamat.2014.04.017
      [7]
      Y. Chino, K. Sassa, and M. Mabuchi, Tensile properties and stretch formability of Mg–1.5 mass%–0.2 mass%Ce sheet rolled at 723 K, Mater. Trans., 49(2008), No. 7, p. 1710. doi: 10.2320/matertrans.MEP2008136
      [8]
      K.F. Zhang, D.L. Yin, and D.Z. Wu, Formability of AZ31 magnesium alloy sheets at warm working conditions, Int. J. Mach. Tools Manuf., 46(2006), No. 11, p. 1276. doi: 10.1016/j.ijmachtools.2006.01.014
      [9]
      K.I. Mori and H. Tsuji, Cold deep drawing of commercial magnesium alloy sheets, J. Jpn. Soc. Technol. Plast., 48(2007), No. 552, p. 41. doi: 10.9773/sosei.48.41
      [10]
      G. Dieter, Mechanical Metallurgy, 3rd ed., McGrow-Hill, London, 1986, p. 672.
      [11]
      I. Polmear, D. StJohn, J.F. Nie, and M. Qian, Magnesium alloys, [in] Light Alloys: Metallurgy of the Light Metals, 5th ed., Butterworth-Heinemann, Oxford, 2017, p. 287.
      [12]
      K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, and D. Letzig, Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets, Scripta Mater., 63(2010), No. 7, p. 725. doi: 10.1016/j.scriptamat.2009.12.033
      [13]
      Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, and J.F. Nie, Texture evolution during static recrystallization of cold-rolled magnesium alloys, Acta Mater., 105(2016), p. 479. doi: 10.1016/j.actamat.2015.12.045
      [14]
      J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, and S.R. Agnew, The texture and anisotropy of magnesium–zinc–rare earth alloy sheets, Acta Mater., 55(2007), No. 6, p. 2101. doi: 10.1016/j.actamat.2006.11.013
      [15]
      I. Basu and T. Al-Samman, Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium, Acta Mater., 67(2014), p. 116. doi: 10.1016/j.actamat.2013.12.015
      [16]
      Y. Chino, T. Ueda, Y. Otomatsu, K. Sassa, X.S. Huang, K. Suzuki, and M. Mabuchi, Effects of Ca on tensile properties and stretch formability at room temperature in Mg–Zn and Mg–Al alloys, Mater. Trans., 52(2011), No. 7, p. 1477. doi: 10.2320/matertrans.M2011048
      [17]
      J. Hirsch and T. Al-Samman, Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications, Acta Mater., 61(2013), No. 3, p. 818. doi: 10.1016/j.actamat.2012.10.044
      [18]
      J.F. Nie, K.S. Shin, and Z.R. Zeng, Microstructure, deformation, and property of wrought magnesium alloys, Metall. Mater. Trans. A, 51(2020), No. 12, p. 6045. doi: 10.1007/s11661-020-05974-z
      [19]
      M.Z. Bian, Z.R. Zeng, S.W. Xu, W.N. Tang, C.H.J. Davies, N. Birbilis, and J.F. Nie, Enhanced tensile properties of Mg sheets by a unique thermomechanical processing method, Metall. Mater. Trans. A, 47(2016), No. 12, p. 5709. doi: 10.1007/s11661-016-3777-z
      [20]
      Z.R. Zeng, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, and J.F. Nie, Effects of dilute additions of Zn and Ca on ductility of magnesium alloy sheet, Mater. Sci. Eng. A, 674(2016), p. 459. doi: 10.1016/j.msea.2016.07.049
      [21]
      F. Vollertsen, Metal forming: Microparts, [in] K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, and P. Veyssière, eds., Encyclopedia of Materials: Science and Technology, 2nd ed., Elsevier, Oxford, 2001, p. 5424.
      [22]
      C.F. Gu, Micro-Forming and Grain Refinement: Effects of Microstructural and Geometric Scale on Metal Formability [Dissertation], Monash University, 2010.
      [23]
      T. Nakata, C. Xu, Y. Uehara, T.T. Sasaki, and S. Kamado, Origin of texture weakening in a rolled ZEX4101 alloy sheet and its effect on room temperature formability and tensile property, J. Alloys Compd., 782(2019), p. 304. doi: 10.1016/j.jallcom.2018.12.194
      [24]
      M.Z. Bian, Z.R. Zeng, S.W. Xu, S.M. Zhu, Y.M. Zhu, C.H.J. Davies, N. Birbilis, and J.F. Nie, Improving formability of Mg–Ca–Zr sheet alloy by microalloying of Zn, Adv. Eng. Mater., 18(2016), No. 10, p. 1763. doi: 10.1002/adem.201600293
      [25]
      T.T. Sasaki, F.R. Elsayed, T. Nakata, T. Ohkubo, S. Kamado, and K. Hono, Strong and ductile heat-treatable Mg–Sn–Zn–Al wrought alloys, Acta Mater., 99(2015), p. 176. doi: 10.1016/j.actamat.2015.06.060
      [26]
      J.R. TerBush, N. Stanford, J.F. Nie, and M.R. Barnett, Na partitioning during thermomechanical processing of an Mg–Sn–Zn–Na alloy, Metall. Mater. Trans. A, 44(2013), No. 11, p. 5216. doi: 10.1007/s11661-013-1872-y
      [27]
      J.L. Li, X.X. Wang, N. Zhang, D. Wu, and R.S. Chen, Ductility drop of the solutionized Mg–Gd–Y–Zr alloy during tensile deformation at 350 °C, J. Alloys Compd., 714(2017), p. 104. doi: 10.1016/j.jallcom.2017.04.225
      [28]
      T. Hase, T. Ohtagaki, M. Yamaguchi, N. Ikeo, and T. Mukai, Effect of aluminum or zinc solute addition on enhancing impact fracture toughness in Mg–Ca alloys, Acta Mater., 104(2016), p. 283. doi: 10.1016/j.actamat.2015.11.045
      [29]
      F.J. Humphreys and M. Hatherly, Recrystallisation and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004.
      [30]
      Z.R. Zeng, M.R. Zhou, P. Lynch, F. Mompiou, Q.F. Gu, M. Esmaily, Y.M. Yan, Y. Qiu, S.W. Xu, H. Fujii, C. Davies, J.F. Nie, and N. Birbilis, Deformation modes during room temperature tension of fine-grained pure magnesium, Acta Mater., 206(2021), art. No. 116648. doi: 10.1016/j.actamat.2021.116648
      [31]
      H. Somekawa, D.A. Basha, and A. Singh, Deformation behavior at room temperature ranges of fine-grained Mg–Mn system alloys, Mater. Sci. Eng. A, 766(2019), art. No. 138384. doi: 10.1016/j.msea.2019.138384

    Catalog


    • /

      返回文章
      返回