留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 8
Aug.  2022

图(11)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  2587
  • HTML全文浏览量:  1240
  • PDF下载量:  69
  • 被引次数: 0
Mana Rodchom, Panida Wimuktiwan, Kanit Soongprasit, Duangduen Atong, and Supawan Vichaphund, Preparation and characterization of ceramic materials with low thermal conductivity and high strength using high-calcium fly ash, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1635-1645. https://doi.org/10.1007/s12613-021-2367-2
Cite this article as:
Mana Rodchom, Panida Wimuktiwan, Kanit Soongprasit, Duangduen Atong, and Supawan Vichaphund, Preparation and characterization of ceramic materials with low thermal conductivity and high strength using high-calcium fly ash, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1635-1645. https://doi.org/10.1007/s12613-021-2367-2
引用本文 PDF XML SpringerLink
研究论文

高钙粉煤灰制备低导热高强度陶瓷材料及其表征

  • 通讯作者:

    Supawan Vichaphund    E-mail: supawank@mtec.or.th

  • 从泰国Mae Moh发电厂收集的高钙粉煤灰(HCFA)被用作陶瓷生产的原料。X射线荧光表征下HCFA主要成分为28.55wt% SiO2、16.06wt% Al2O3、23.40wt% CaO和17.03wt% Fe2O3。由于钙质和铁质含量比例较高,使用HCFA替代钾长石,用量为10wt%–40wt%。研究了替代高钙粉煤灰(0–40wt%)和烧结温度(1000–1200°C)对陶瓷基材料的物理、机械和热性能的影响。结果表明,加入适量的HCFA可以提高陶瓷样品的致密化程度和强度,降低陶瓷样品的导热系数。粉煤灰中高比例的钙质和铁质成分促进了陶瓷样品的玻璃化行为。研究结果说明,在最佳粉煤灰含量和烧结温度下,液相的形成促进了致密化。此外,这些组分还促进了更丰富的莫来石形成,从而提高了陶瓷样品的弯曲强度。在1150–1200°C烧结温度下,添加10wt%–30wt%的粉煤灰,可获得最佳陶瓷性能。在 1200°C、 吸水率几乎为零(0.03%)时,添加粉煤灰10wt%–30wt%(PSW-FA(10)–(30))的FA陶瓷样品的最大弯曲强度在92.25–94.71 MPa范围内。就隔热材料而言,粉煤灰添加量的增加对热导率有积极的影响,这是因为陶瓷FA样品内部无机分解反应产生的气体产生了更高的孔隙度。在1150°C烧结的陶瓷样品中添加20wt%–40wt%的高钙粉煤灰可将热导率降低14.78%–49.25%,同时保持可接受的弯曲强度值(~45.67–87.62 MPa)。基于其表现出良好的机械和热性能,利用这种高钙粉煤灰作为粘土成分的替代原料制造瓷砖是可行的。

  • Research Article

    Preparation and characterization of ceramic materials with low thermal conductivity and high strength using high-calcium fly ash

    + Author Affiliations
    • High calcium-fly ash (HCFA) collected from the Mae Moh electricity generating plant in Thailand was utilized as a raw material for ceramic production. The main compositions of HCFA characterized by X-ray fluorescence mainly consisted of 28.55wt% SiO2, 16.06wt% Al2O3, 23.40wt% CaO, and 17.03wt% Fe2O3. Due to high proportion of calcareous and ferruginous contents, HCFA was used for replacing the potash feldspar in amounts of 10wt%–40wt%. The influence of substituting high-calcium fly ash (0–40wt%) and sintering temperatures (1000–1200°C) on physical, mechanical, and thermal properties of ceramic-based materials was investigated. The results showed that the incorporation of HCFA in appropriate amounts could enhance the densification and the strength as well as reduce the thermal conductivity of ceramic samples. High proportion of calcareous and ferruginous constituents in fly ash promoted the vitrification behavior of ceramic samples. As a result, the densification was enhanced by liquid phase formation at optimum fly ash content and sintering temperature. In addition, these components also facilitated a more abundant mullite formation and consequently improved flexural strength of the ceramic samples. The optimum ceramic properties were achieved with adding fly ash content between 10wt%–30wt% sintered at 1150–1200°C. At 1200°C, the maximum flexural strength of ceramic-FA samples with adding fly ash 10wt%–30wt% (PSW-FA(10)–(30)) was obtained in the range of 92.25–94.71 MPa when the water absorption reached almost zero (0.03%). In terms of thermal insulation materials, the increase in fly ash addition had a positively effect on the thermal conductivity, due to the higher levels of porosity created by gas evolving from the inorganic decomposition reactions inside the ceramic-FA samples. The addition of 20wt%–40wt% high-calcium fly ash in ceramic samples sintered at 1150°C reduced the thermal conductivity to 14.78%–49.25%, while maintaining acceptable flexural strength values (~45.67–87.62 MPa). Based on these promising mechanical and thermal characteristics, it is feasible to utilize this high-calcium fly ash as an alternative raw material in clay compositions for manufacturing of ceramic tiles.

    • loading
    • [1]
      S.B. Wang, Application of solid ash based catalysts in heterogeneous catalysis, Environ. Sci. Technol., 42(2008), No. 19, p. 7055. doi: 10.1021/es801312m
      [2]
      M. Park, C.L. Choi, W.T. Lim, M.C. Kim, J. Choi, and N.H. Heo, Molten-salt method for the synthesis of zeolitic materials: I. Zeolite formation in alkaline molten-salt system, Microporous Mesoporous Mater., 37(2000), No. 1-2, p. 81. doi: 10.1016/S1387-1811(99)00196-1
      [3]
      N. Murayama, H. Yamamoto, and J. Shibata, Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction, Int. J. Miner. Process., 64(2002), No. 1, p. 1. doi: 10.1016/S0301-7516(01)00046-1
      [4]
      J.T. Soe, S.S. Kim, Y.R. Lee, J.W. Ahn, and W.S. Ahn, CO2 capture and Ca2+ exchange using zeolite A and 13X prepared from power plant fly ash, Bull. Korean Chem. Soc., 37(2016), No. 4, p. 490. doi: 10.1002/bkcs.10710
      [5]
      R. Panek, M. Wdowin, W. Franus, et al., Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture, J. CO2 Util., 22(2017), p. 81. doi: 10.1016/j.jcou.2017.09.015
      [6]
      P. Kumar, N. Mal, Y. Oumi, K. Yamana, and T. Sano, Mesoporous materials prepared using coal fly ash as the silicon and aluminium source, J. Mater. Chem., 11(2001), No. 12, p. 3285. doi: 10.1039/b104810b
      [7]
      S. Vichaphund, D. Aht-Ong, V. Sricharoenchaikul, and D. Atong, Characteristic of fly ash derived-zeolite and its catalytic performance for fast pyrolysis of Jatropha waste, Environ. Technol., 35(2014), No. 17, p. 2254. doi: 10.1080/09593330.2014.900118
      [8]
      S. Vichaphund, V. Sricharoenchaikul, and D. Atong, Utilization of fly ash-derived HZSM-5: Catalytic pyrolysis of Jatropha wastes in a fixed-bed reactor, Environ. Technol., 38(2017), No. 13-14, p. 1660. doi: 10.1080/09593330.2016.1244567
      [9]
      J.J. Feng, J.W. Sun, and P.Y. Yan, The influence of ground fly ash on cement hydration and mechanical property of mortar, Adv. Civ. Eng., 2018(2018), art. No. 4023178. doi: 10.1155/2018/4023178
      [10]
      R. Rajamma, R.J. Ball, L.A.C. Tarelho, G.C. Allen, J.A. Labrincha, and V.M. Ferreira, Characterisation and use of biomass fly ash in cement-based materials, J. Hazard. Mater., 172(2009), No. 2-3, p. 1049. doi: 10.1016/j.jhazmat.2009.07.109
      [11]
      T.H.M. Le, D.W. Park, J.Y. Park, and T.M. Phan, Evaluation of the effect of fly ash and slag on the properties of cement asphalt mortar, Adv. Mater. Sci. Eng., 2019(2019), art. No. 1829328. doi: 10.1155/2019/1829328
      [12]
      F. Skvara, T. Jilek, and L. Kopecky, Geopolymer materials based on fly ash, Ceram. Silik., 49(2005), No. 3, p. 195.
      [13]
      R.M. Novais, L.H. Buruberri, G. Ascensão, M.P. Seabra, and J.A. Labrincha, Porous biomass fly ash-based geopolymers with tailored thermal conductivity, J. Clean. Prod., 119(2016), p. 99. doi: 10.1016/j.jclepro.2016.01.083
      [14]
      S. Alehyen, M.E.L. Achouri, and M. Taibi, Characterization, microstructure and properties of fly ash-based geopolymer, J. Mater. Environ. Sci., 8(2017), No. 5, p. 1783.
      [15]
      J.J. Feng, R.F. Zhang, L.L. Gong, Y. Li, W. Cao, and X.D. Cheng, Development of porous fly ash-based geopolymer with low thermal conductivity, Mater. Des., 65(2015), p. 529. doi: 10.1016/j.matdes.2014.09.024
      [16]
      K. Dana, S. Das, and S.K. Das, Effect of substitution of fly ash for quartz in triaxial kaolin–quartz–feldspar system, J. Eur. Ceram. Soc., 24(2004), No. 10-11, p. 3169. doi: 10.1016/j.jeurceramsoc.2003.10.008
      [17]
      T.K. Mukhopadhyay, S. Ghosh, J. Ghosh, S. Ghatak, and H.S. Maiti, Effect of fly ash on the physico-chemical and mechanical properties of a porcelain composition, Ceram. Int., 36(2010), No. 3, p. 1055. doi: 10.1016/j.ceramint.2009.12.012
      [18]
      Y. Luo, S.L. Zheng, S.H. Ma, C.L. Liu, and X.H. Wang, Ceramic tiles derived from coal fly ash: Preparation and mechanical characterization, Ceram. Int., 43(2017), No. 15, p. 11953. doi: 10.1016/j.ceramint.2017.06.045
      [19]
      H. Wang, M.G. Zhu, Y.Q. Sun, R. Ji, L.L. Liu, and X.D. Wang, Synthesis of a ceramic tile base based on high-alumina fly ash, Constr. Build. Mater., 155(2017), p. 930. doi: 10.1016/j.conbuildmat.2017.07.049
      [20]
      EGAT Biznews, Coal Combustion Products, Electricity Generating Authority of Thailand (EGAT), Thailand [2020-12-30]. https://www.egatbusiness.com/archive/biznews/2560/BizNews2017-4.pdf
      [21]
      Y. Deng, B. Gong, Y. Chao, et al., Sustainable utilization of municipal solid waste incineration fly ash for ceramic bricks with eco-friendly biosafety, Mater. Today Sustain., 1-2(2018), p. 32. doi: 10.1016/j.mtsust.2018.11.002
      [22]
      N.U. Kockal, Utilisation of different types of coal fly ash in the production of ceramic tiles, Bol. Soc. Esp. Ceram. Vidrio, 51(2012), No. 5, p. 297. doi: 10.3989/cyv.412012
      [23]
      S.S. Hossain, V. Ranjan, R. Pyare, and P.K. Roy, Study the effect of physico-mechanical characteristics of ceramic tiles after addition of river silts and wollastonite derived from wastes, Constr. Build. Mater., 209(2019), p. 315. doi: 10.1016/j.conbuildmat.2019.03.128
      [24]
      H. Wang, Y.Q. Sun, L.L. Liu, R. Ji, and X.D. Wang, Integrated utilization of fly ash and waste glass for synthesis of foam/dense bi-layered insulation ceramic tile, Energy Build., 168(2018), p. 67. doi: 10.1016/j.enbuild.2018.03.018
      [25]
      M.K. Zhou, X.X. Ge, H.D. Wang, L.S. Chen, and X. Chen, Effect of the CaO content and decomposition of calcium-containing minerals on properties and microstructure of ceramic foams from fly ash, Ceram. Int., 43(2017), No. 12, p. 9451. doi: 10.1016/j.ceramint.2017.04.122
      [26]
      Y. Luo, J.Y. Wang, Y.H. Wu, X.Y. Li, P.K. Chu, and T. Qi, Substitution of quartz and clay with fly ash in the production of architectural ceramics: A mechanistic study, Ceram. Int., 47(2021), No. 9, p. 12514. doi: 10.1016/j.ceramint.2021.01.109
      [27]
      R.Y. Chen, Y.B. Li, R.F. Xiang, and S.J. Li, Effect of particle size of fly ash on the properties of lightweight insulation materials, Constr. Build. Mater., 123(2016), p. 120. doi: 10.1016/j.conbuildmat.2016.06.140
      [28]
      M.F. Serra, M.S. Conconi, G. Suarez, E.F. Aglietti, and N.M. Rendtorff, Volcanic ash as flux in clay based triaxial ceramic materials, effect of the firing temperature in phases and mechanical properties, Ceram. Int., 41(2015), No. 5, p. 6169. doi: 10.1016/j.ceramint.2014.12.123
      [29]
      S. Vichaphund, K. Somton, T. Wonglom, M. Rodchom, and D. Atong, Utilization of basalt fibers as a raw material for clay ceramic production, Ceram. Silik., (2016), p. 72.
      [30]
      International Organization for Standardization, ISO 13006: Ceramic Tiles—Definitions, Classification, Characteristics and Marking, International Organization for Standardization, Geneva, 1998.
      [31]
      R. Ji, Z.T. Zhang, C. Yan, M.G. Zhu, and Z.M. Li, Preparation of novel ceramic tiles with high Al2O3 content derived from coal fly ash, Constr. Build. Mater., 114(2016), p. 888. doi: 10.1016/j.conbuildmat.2016.04.014
      [32]
      A. Zimmer and C.P. Bergmann, Fly ash of mineral coal as ceramic tiles raw material, Waste Manage., 27(2007), No. 1, p. 59. doi: 10.1016/j.wasman.2006.01.009
      [33]
      S.J. Ke, Y.M. Wang, Z.D. Pan, C.Y. Ning, and S.L. Zheng, Recycling of polished tile waste as a main raw material in porcelain tiles, J. Clean. Prod., 115(2016), p. 238. doi: 10.1016/j.jclepro.2015.12.064
      [34]
      T.K. Mukhopadhyay, S. Ghosh, S. Ghatak, and H.S. Maiti, Effect of pyrophyllite on vitrification and on physical properties of triaxial porcelain, Ceram. Int., 32(2006), No. 8, p. 871. doi: 10.1016/j.ceramint.2005.07.002
      [35]
      Y. Iqbal and W.E. Lee, Microstructural evolution in triaxial porcelain, J. Am. Ceram. Soc., 83(2000), No. 12, p. 3121. doi: 10.1111/j.1151-2916.2000.tb01692.x
      [36]
      Y.M. Park, T.Y. Yang, S.Y. Yoon, R. Stevens, and H.C. Park, Mullite whiskers derived from coal fly ash, Mater. Sci. Eng. A, 454-455(2007), p. 518. doi: 10.1016/j.msea.2006.11.114
      [37]
      T.Y. Wang, S.H. Ma, X.H. Wang, T. Hong, and Y. Luo, A 100% high-aluminum fly ash-based high-density mullite ceramic with a triple microstructure: Preparation and mechanical characterization, Constr. Build. Mater., 239(2020), art. No. 117761. doi: 10.1016/j.conbuildmat.2019.117761
      [38]
      R.F. Zhang, J.J. Feng, X.D. Cheng, L.L. Gong, Y. Li, and H.P. Zhang, Porous thermal insulation materials derived from fly ash using a foaming and slip casting method, Energy Build., 81(2014), p. 262. doi: 10.1016/j.enbuild.2014.06.028

    Catalog


    • /

      返回文章
      返回