留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 1
Jan.  2023

图(17)

数据统计

分享

计量
  • 文章访问数:  741
  • HTML全文浏览量:  274
  • PDF下载量:  37
  • 被引次数: 0
Elham Mohseni-Sohiand Farshid Kashani Bozorg, Effect of Al substitution on phase evolution in synthesized Mg2Cu nanoparticles, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 63-71. https://doi.org/10.1007/s12613-021-2368-1
Cite this article as:
Elham Mohseni-Sohiand Farshid Kashani Bozorg, Effect of Al substitution on phase evolution in synthesized Mg2Cu nanoparticles, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 63-71. https://doi.org/10.1007/s12613-021-2368-1
引用本文 PDF XML SpringerLink
研究论文

铝替代对合成的Mg2Cu纳米颗粒相演变的影响

  • 通讯作者:

    Elham Mohseni-Sohi    E-mail: elham.mohseni@stud.tu-darmstadt.de

  • 研究了用Al替代Mg对Mg2Cu粉末混合物的放电能力的影响。通过机械合金化(MA)技术,用高能行星式球磨机制备纳米晶体粉末的混合物。此外,不同摩尔数的Al(0.05, 0.1, 0.15, 0.2和0.3 M)被替换到Mg2Cu粉末中。利用X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析结构、形态和晶粒大小的变化。获得的粉末用作镍金属氢化物电池(Ni–MH)的阳极。在铝含量为0.05 M的试样中,经过5 h的研磨,出现了Mg2Cu的正方体结构。结果显示,超过0.1 M的Al替代会导致MgCu2峰的出现。铝的替代并不影响微观结构的均匀性;然而,它导致晶体尺寸和晶格参数的减少。选区衍射(SAD)图表明具有Mg1.9Al0.1Cu化学成分和20 h研磨的电极具有最大的放电容量。
  • Research Article

    Effect of Al substitution on phase evolution in synthesized Mg2Cu nanoparticles

    + Author Affiliations
    • The effect of Mg replacement with Al on the discharge capacity of Mg2Cu powder mixture was investigated. The mixture of nanocrystalline powder was prepared via mechanical alloying (MA) technique with a high energy planetary ball mill. In addition, different moles of Al (0.05, 0.1, 0.15, 0.2, and 0.3 M) were substituted to Mg2Cu powder. X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to analyze changes in structure, morphology, and grain size. The obtained powder was utilized as an anode in a nickel–metal hydride battery (Ni–MH). In the specimens with 0.05 M Al content, the orthorhombic structure of Mg2Cu is emerged after 5 h milling. The results reveal that more than 0.1 M Al substitution leads to an appearance of MgCu2 peaks. Al substitution does not affect microstructure uniformity; however, it causes a decrease in crystalline size and lattice parameters. The selected area diffraction (SAD) pattern elucidates that the electrode with the Mg1.9Al0.1Cu chemical composition and 20 h milling has the maximum discharge capacity.
    • loading
    • [1]
      V.V. Goidin, V.V. Molchanov, and R.A. Buyanov, Mechanochemical synthesis of intermetallic hydrides at elevated hydrogen pressures, Inorg. Mater., 40(2004), No. 11, p. 1165. doi: 10.1023/B:INMA.0000048215.08698.ba
      [2]
      Y.M. Dergachev, I.G. Gorichev, and N.T. Kuznetsov, Kinetics of aluminum hydride thermal decomposition, Inorg. Mater., 36(2000), No. 5, p. 458. doi: 10.1007/BF02758047
      [3]
      J.Z. Song, Z.Y. Zhao, X. Zhao, R.D. Fu, and S.M. Han, Hydrogen storage properties of MgH2 co-catalyzed by LaH3 and NbH, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1183. doi: 10.1007/s12613-017-1509-z
      [4]
      S.R. Ovshinsky, M.A. Fetcenko, and J. Ross, A nickel metal hydride battery for electric vehicles, Science, 260(1993), No. 5105, p. 176. doi: 10.1126/science.260.5105.176
      [5]
      W.L. Mi, Z.S. Liu, T. Kimura, A. Kamegawa, and H.L. Wang, Crystal structure and hydrogen storage properties of (La, Ce)Ni5−xMx (M = Al, Fe, or Co) alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 108. doi: 10.1007/s12613-019-1714-z
      [6]
      A. Taniguchi, N. Fujioka, M. Ikoma, and A. Ohta, Development of nickel/metal-hydride batteries for EVs and HEVs, J. Power Sources, 100(2001), No. 1-2, p. 117. doi: 10.1016/S0378-7753(01)00889-8
      [7]
      T. Ozaki, M. Kanemoto, T. Kakeya, Y. Kitano, M. Kuzuhara, M. Watada, S. Tanase, and T. Sakai, Stacking structures and electrode performances of rare earth-Mg-Ni-based alloys for advanced nickel-metal hydride battery, J. Alloys Compd., 446-447(2007), p. 620. doi: 10.1016/j.jallcom.2007.03.059
      [8]
      Y. Li, Y. Tao, and Q. Huo, Effect of stoichiometry and Cu-substitution on the phase structure and hydrogen storage properties of Ml-Mg-Ni-based alloys, Int. J. Miner. Metall. Mater., 22(2015), No. 1, p. 86. doi: 10.1007/s12613-015-1047-5
      [9]
      N.N. Yazvinskaya, N.E. Galushkin, D.N. Galushkin, and I.A. Galushkina, Analysis of thermal runaway aftereffects in nickel-cadmium batteries, Int. J. Electrochem. Sci., 11(2016), No. 12, p. 10287. doi: 10.20964/2016.12.44
      [10]
      N.N. Yazvinskaya, N.E. Galushkin, D.N. Galushkin, and I.A. Galushkina, Hydrogen amount estimation in electrodes of nickel-cadmium batteries depending on their operating life, Int. J. Electrochem. Sci., 11(2016), p. 7843. doi: 10.20964/2016.09.49
      [11]
      Z.T. Dong, Y. Li, K.L. Ren, S.Q. Yang, Y.M. Zhao, Y.J. Yuan, L. Zhang, and S.M. Han, Enhanced electrochemical properties of LaFeO3 with Ni modification for MH-Ni batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1201. doi: 10.1007/s12613-018-1672-x
      [12]
      T. Tojo, I. Yamamoto, Q.W. Zhang, and F. Saito, Discharge properties of Mg2Ni-Ni alloy synthesized by mechanical alloying, Adv. Powder Technol., 16(2005), No. 6, p. 649. doi: 10.1163/156855205774483299
      [13]
      A. Gasiorowski, W. Iwasieczko, D. Skoryna, H. Drulis, and M. Jurczyk, Hydriding properties of nanocrystalline Mg2−xMxNi alloys synthesized by mechanical alloying (M=Mn, Al), J. Alloys Compd., 364(2004), No. 1-2, p. 283. doi: 10.1016/S0925-8388(03)00544-9
      [14]
      A. Szajek, M. Jurczyk, I. Okońska, K. Smardz, E. Jankowska, and L. Smardz, Electrochemical and electronic properties of nanocrystalline Mg-based hydrogen storage materials, J. Alloys Compd., 436(2007), No. 1-2, p. 345. doi: 10.1016/j.jallcom.2006.07.043
      [15]
      K. Tanaka, N. Takeichi, H. Tanaka, N. Kuriyama, T. Ueda, M. Tsukahara, H. Miyamura, and S. Kikuchi, TEM investigation of micro/nano-structures and hydrogen storage properties of Mg/Cu super-laminates and Mg2Cu powder, Microsc. Microanal., 13(2007), No. S02, p. 1098. doi: 10.1017/S1431927607073175
      [16]
      X. Yao, S.D. McDonald, A.K. Dahle, C.J. Davidson, and D.H. StJohn, Modeling of grain refinement: Part III. Al−7Si−0.3Mg aluminum alloy, J. Mater. Res., 23(2008), No. 5, p. 1301. doi: 10.1557/JMR.2008.0155
      [17]
      L.S. Volkova, G.V. Kalinnikov, A.V. Ivanov, and S.P. Shilkin, Synthesis of Mg2Cu and MgCu2 nanoparticles In a KCl−NaCl−MgCl2 melt, Inorg. Mater., 48(2012), No. 11, p. 1078. doi: 10.1134/S0020168512110179
      [18]
      V.N. Fokin, P.V. Fursikov, E.E. Fokina, and B.P. Tarasov, Hydrogenation of eutectic alloy in the Mg–Al system, Inorg. Mater., 57(2021), No. 3, p. 234. doi: 10.1134/S0020168521030043
      [19]
      M. Anik, F. Karanfil, and N. Küçükdeveci, Development of the high performance magnesium based hydrogen storage alloy, Int. J. Hydrogen Energy, 37(2012), No. 1, p. 299. doi: 10.1016/j.ijhydene.2011.09.057
      [20]
      N. Cui, B. Luan, H.K. Liu, H.J. Zhao, and S.X. Dou, Characteristics of magnesium-based hydrogen-storage alloy electrodes, J. Power Sources, 55(1995), No. 2, p. 263. doi: 10.1016/0378-7753(95)02195-M
      [21]
      N. Cui, P. He, and J.L. Luo, Magnesium-based hydrogen storage materials modified by mechanical alloying, Acta Mater., 47(1999), No. 14, p. 3737. doi: 10.1016/S1359-6454(99)00249-9
      [22]
      J.J. Reilly and R.H. Wiswall, Reaction of hydrogen with alloys of magnesium and copper, Inorg. Chem., 6(1967), No. 12, p. 2220. doi: 10.1021/ic50058a020
      [23]
      M. Jurczyk, L. Smardz, and A. Szajek, Nanocrystalline materials for Ni-MH batteries, Mater. Sci. Eng. B, 108(2004), No. 1-2, p. 67. doi: 10.1016/j.mseb.2003.10.050
      [24]
      P. Novák, D. Vojtěch, F. Průša, J. Šerák, and T. Fabián, Structure and properties of magnesium-based hydrogen storage alloys, Mater. Sci. Forum, 567-568(2007), p. 217. doi: 10.4028/www.scientific.net/MSF.567-568.217
      [25]
      L. Lu and Y.F. Zhang, Influence of process control agent on interdiffusion between Al and Mg during mechanical alloying, J. Alloys Compd., 290(1999), No. 1-2, p. 279. doi: 10.1016/S0925-8388(99)00221-2
      [26]
      M. Jurczyk, L. Smardz, I. Okonska, E. Jankowska, M. Nowak, and K. Smardz, Nanoscale Mg-based materials for hydrogen storage, Int. J. Hydrogen Energy, 33(2008), No. 1, p. 374. doi: 10.1016/j.ijhydene.2007.07.022
      [27]
      X.D. Yao and G.Q. Lu, Magnesium-based materials for hydrogen storage: Recent advances and future perspectives, Chin. Sci. Bull., 53(2008), No. 16, p. 2421. doi: 10.1007/s11434-008-0325-2
      [28]
      M. Jurczyk, I. Okonska, W. Iwasieczko, E. Jankowska, and H. Drulis, Thermodynamic and electrochemical properties of nanocrystalline Mg2Cu-type hydrogen storage materials, J. Alloys Compd., 429(2007), No. 1-2, p. 316. doi: 10.1016/j.jallcom.2006.04.024
      [29]
      G. Mulas, M. Varga, I. Bertóti, Á. Molnár, G. Cocco, and J. Szépvölgyi, Cu40Mg60 and Cu-MgO powders prepared by ball-milling: Characterization and catalytic tests, Mater. Sci. Eng., A, 267(1999), No. 2, p. 193. doi: 10.1016/S0921-5093(99)00091-X
      [30]
      G. Mulas, S. Deledda, and G. Cocco, The mechanochemical conversion of acetone to methyl isobutyl ketone over Cu-Mg based substrates, Mater. Sci. Eng., A, 267(1999), No. 2, p. 214. doi: 10.1016/S0921-5093(99)00094-5
      [31]
      Z. Ma, Y. Liu, L. Yu, and Q. Cai, Investigation of phase composition and nanoscale microstructure of high-energy ball-milled MgCu sample, Nanoscale Res. Lett., 7(2012), No. 1, p. 390. doi: 10.1186/1556-276X-7-390
      [32]
      R. Wiswall, Hydrogen storage in metals., [in] G. Alefeld and J. Völkl, eds., Hydrogen in Metals II. Topics in Applied Physics, Springer-Verlag Berlin, Heidelberg, 1978, p. 201.
      [33]
      S. Rousselot, M.P. Bichat, D. Guay, and L. Roué, Structure and electrochemical hydrogen storage properties of mg-ti based materials prepared by mechanical alloying, ECS Trans., 16(2019), No. 42, p. 91. doi: 10.1149/1.3112733
      [34]
      L.Z. Ouyang, T.H. Yang, M. Zhu, D. Min, T.Z. Luo, H. Wang, F.M. Xiao, and R.H. Tang, Hydrogen storage and electrochemical properties of Pr, Nd and Co-free La13.9Sm24.7Mg1.5Ni58Al1.7Zr0.14Ag0.07 alloy as a nickel-metal hydride battery electrode, J. Alloys Compd., 735(2018), p. 98. doi: 10.1016/j.jallcom.2017.10.268
      [35]
      S. Bliznakov, E. Lefterova, N. Dimitrov, K. Petrov, and A. Popov, A study of the Al content impact on the properties of MmNi4.4−xCo0.6Alx alloys as precursors for negative electrodes in NiMH batteries, J. Power Sources, 176(2008), No. 1, p. 381. doi: 10.1016/j.jpowsour.2007.10.028
      [36]
      E.C. Souza, and E.A. Ticianelli, On the properties of LaNi5-type metal hydride alloys, J. Brazalian Chem. Soc., 14(2003), p. 544. doi: 10.1590/S0103-50532003000400009
      [37]
      R.C. Zeng, Z.G. Liu, F. Zhang, S.Q. Li, Q.K. He, H.Z. Cui, and E.H. Han, Corrosion resistance of in situ Mg−Al hydrotalcite conversion film on AZ31 magnesium alloy by one-step formation, Trans. Nonferrous Met. Soc. China, 25(2015), No. 6, p. 1917. doi: 10.1016/S1003-6326(15)63799-2
      [38]
      A. Wagih, Effect of Mg addition on mechanical and thermoelectrical properties of Al-Al2O3 nanocomposite, Trans. Nonferrous Met. Soc. China, 26(2016), No. 11, p. 2810. doi: 10.1016/S1003-6326(16)64409-6
      [39]
      N. Mani and S. Ramaprabhu, Effect of substitutional elements on hydrogen absorption properties in Mm-based AB5 alloys, J. Alloys Compd., 363(2004), No. 1-2, p. 275. doi: 10.1016/S0925-8388(03)00487-0
      [40]
      T. Sakai, H. Miyamura, N. Kuriyama, A. Kato, K. Oguro, H. Ishikawa, and C. Iwakura, The influence of small amounts of added elements on various anode performance characteristics for LaNi2.5Co2.5-based alloys, J. Less Common Met., 159(1990), p. 127. doi: 10.1016/0022-5088(90)90140-F
      [41]
      D. Shin and Z.K. Liu, Enthalpy of mixing for ternary fcc solid solutions from special quasirandom structures, Calphad, 32(2008), No. 1, p. 74. doi: 10.1016/j.calphad.2007.09.002
      [42]
      M.X. Tanaka, N. Takeichi, H.T. Takeshita, and T. Kiyobayashi, Effect of ball-milling on the properties of Mg2Cu hydrogen storage alloy, Mater. Trans., 49(2008), No. 11, p. 2698. doi: 10.2320/matertrans.MRA2008183
      [43]
      Z.Q. Ma, Y.C. Liu, L.M. Yu, and Q. Cai, Correction: Investigation of phase composition and nanoscale microstructure of high-energy ball-milled MgCu sample, Nanoscale Res. Lett., 8(2013), No. 1, p. 186. doi: 10.1186/1556-276X-8-186
      [44]
      J. Gilbert Kaufman, Introduction to Aluminium Alloys and Tempers, ASM International, 2000.
      [45]
      C.C. Koch, The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review, Nanostruct. Mater., 2(1993), No. 2, p. 109. doi: 10.1016/0965-9773(93)90016-5
      [46]
      M. Mohri and S.F. Kashani Bozorg, An electrochemical investigation of nanocrystalline Mg2Ni0.75Nb0.25 compound synthesized by mechanical alloying, Int. J. Mod. Phys. B, 22(2008), No. 18n19, p. 2939. doi: 10.1142/S021797920804778X
      [47]
      J. Chen, P. Yao, D.H. Bradhurst, S.X. Dou, and H.K. Liu, Mg2Ni-based hydrogen storage alloys for metal hydride electrodes, J. Alloys Compd., 293-295(1999), p. 675. doi: 10.1016/S0925-8388(99)00429-6
      [48]
      R. Abbasi and S.F. Kashani-Bozorg, Electrochemical and kinetic performance of amorphous/nanostructured TiNi-based intermetallic compound with Nb substitution synthesized by mechanical alloying, J. Mater. Res., 33(2018), No. 22, p. 3774. doi: 10.1557/jmr.2018.231

    Catalog


    • /

      返回文章
      返回