留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 9
Sep.  2022

图(16)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  2737
  • HTML全文浏览量:  309
  • PDF下载量:  81
  • 被引次数: 0
A.V. Koltygin, V.E. Bazhenov, I.V. Plisetskaya, V.A. Bautin, A.I. Bazlov, N.Y. Tabachkova, O.O. Voropaeva, A.A. Komissarov,  and V.D. Belov, Influence of Zr and Mn additions on microstructure and properties of Mg–2.5wt%Cu–Xwt%Zn (X = 2.5, 5 and 6.5) alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1733-1745. https://doi.org/10.1007/s12613-021-2369-0
Cite this article as:
A.V. Koltygin, V.E. Bazhenov, I.V. Plisetskaya, V.A. Bautin, A.I. Bazlov, N.Y. Tabachkova, O.O. Voropaeva, A.A. Komissarov,  and V.D. Belov, Influence of Zr and Mn additions on microstructure and properties of Mg–2.5wt%Cu–Xwt%Zn (X = 2.5, 5 and 6.5) alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1733-1745. https://doi.org/10.1007/s12613-021-2369-0
引用本文 PDF XML SpringerLink
研究论文

添加Zr和Mn对Mg2.5wt%Cu–Xwt%Zn (X = 2.5、5和6.5)合金组织和性能的影响

  • 通讯作者:

    V.E. Bazhenov    E-mail: v.e.bagenov@gmail.com

  • 本工作研究了添加量小于1wt%的Zr和Mn对含2.5wt% Cu和2.5wt%–6.5wt% Zn的Mg–Zn–Cu合金的显微组织、力学性能、铸造性能和耐腐蚀性能的影响。通过对硬度和电导率的测量研究,找出具有最佳力学性能的最佳热处理方案。研究表明,由于Zr具有较强的晶粒细化效应,使得合金的屈服强度显著提高。然而,Mn和Zr的存在对合金的断裂伸长率有不利影响。研究结果表明,合金结构中Mg2Cu阴极相的析出对腐蚀行为产生了负面影响。然而,添加Mn降低了所研究合金的腐蚀速率。当铜含量为2.5wt%,锌含量为5wt%时,合金的力学性能、铸造性能和腐蚀性能得到了最佳的组合。而Mn或Zr的添加可以改善合金的性能;例如,添加Mn或Zr会增加合金的流动性。
  • Research Article

    Influence of Zr and Mn additions on microstructure and properties of Mg–2.5wt%Cu–Xwt%Zn (X = 2.5, 5 and 6.5) alloys

    + Author Affiliations
    • This work studied the effects of adding Zr and Mn in amounts less than 1wt% on the microstructure, mechanical properties, casting properties, and corrosion resistance of Mg–Zn–Cu alloys containing 2.5wt% Cu and 2.5wt%–6.5wt% Zn. The hardness and electrical conductivity measurements were used to find an optimal heat treatment schedule with the best mechanical properties. It has been established that Zr significantly increases the yield strength of the alloys due to a strong grain refinement effect. However, the presence of Mn and Zr has a detrimental effect on alloy’s elongation at fracture. It was shown that the precipitation of the Mg2Cu cathodic phase in the alloy structure negatively affects the corrosion behavior. Nevertheless, the addition of Mn decreases the corrosion rate of the investigated alloys. The best combination of the mechanical, casting, and corrosion properties were achieved in the alloys containing 2.5wt% Cu and 5wt% Zn. However, the Mn or Zr addition can improve the properties of the alloys; for example, the addition of Mn or Zr increases the fluidity of the alloys.
    • loading
    • [1]
      K.U. Kainer, Magnesium Alloys and Their Applications, Wiley-VCH Verlag GmbH, Weinheim, 2000.
      [2]
      A.A. Luo, Magnesium casting technology for structural applications, J. Magnes. Alloys, 1(2013), No. 1, p. 2. doi: 10.1016/j.jma.2013.02.002
      [3]
      H.C. Pan, Y.P. Ren, H. Fu, H. Zhao, L.Q. Wang, X.Y. Meng, and G.W. Qin, Recent developments in rare-earth free wrought magnesium alloys having high strength: A review, J. Alloys Compd., 663(2016), p. 321. doi: 10.1016/j.jallcom.2015.12.057
      [4]
      S.H. You, Y.D. Huang, K.U. Kainer, and N. Hort, Recent research and developments on wrought magnesium alloys, J. Magnes. Alloys, 5(2017), No. 3, p. 239. doi: 10.1016/j.jma.2017.09.001
      [5]
      H. Yu, Y.M. Kim, B.S. You, H.S. Yu, and S.H. Park, Effects of cerium addition on the microstructure, mechanical properties and hot workability of ZK60 alloy, Mater. Sci. Eng. A, 559(2013), p. 798. doi: 10.1016/j.msea.2012.09.026
      [6]
      X.H. Chen, L.Z. Liu, F.S. Pan, J.J. Mao, X.Y. Xu, and T. Yan, Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg–Zn–Cu–Zr alloys, Mater. Sci. Eng. B, 197(2015), p. 67. doi: 10.1016/j.mseb.2015.03.012
      [7]
      Y. Zhang, X.F. Huang, Y. Ma, T.J. Chen, Y.D. Li, and Y. Hao, Effects of Cu addition on microstructure and mechanical properties of as-cast Mg–6Zn magnesium alloy, China Foundry, 14(2017), No. 4, p. 251. doi: 10.1007/s41230-017-6094-2
      [8]
      B.L. Mordike and T. Ebert, Magnesium: Properties—applications—potential, Mater. Sci. Eng. A, 302(2001), No. 1, p. 37. doi: 10.1016/S0921-5093(00)01351-4
      [9]
      J. Buha, Mechanical properties of naturally aged Mg–Zn–Cu–Mn alloy, Mater. Sci. Eng. A, 489(2008), No. 1-2, p. 127. doi: 10.1016/j.msea.2007.12.006
      [10]
      L.G. Xu, X.X. Li, J. Ye, X. Ji, H. Qiu, J. Luo, and H.G. Yang, Thermodynamic optimization design of casting Mg–Zn–Cu alloy, Adv. Mater. Res., 852(2014), p. 183. doi: 10.4028/www.scientific.net/AMR.852.183
      [11]
      I.J. Polmear, Light Alloys: From Traditional Alloys to Nanocrystals, 4th ed., Butterworth-Heinemann, Oxford, 2005.
      [12]
      M.M. Avedesian and H. Baker, Magnesium and Magnesium Alloys, ASM Specialty Handbook, ASM International, Materials Park, OH, 1999.
      [13]
      Y.W. Song, E.H. Han, D.Y. Shan, C.D. Yim, and B.S. You, The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys, Corros. Sci., 65(2012), p. 322. doi: 10.1016/j.corsci.2012.08.037
      [14]
      C. Liu, X.K. Fu, H.B. Pan, P. Wan, L. Wang, L.L. Tan, K.H. Wang, Y. Zhao, K. Yang, and P.K. Chu, Biodegradable Mg–Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects, Sci. Rep., 6(2016), art. No. 27374. doi: 10.1038/srep27374
      [15]
      G.L. Makar and J. Kruger, Corrosion of magnesium, Int. Mater. Rev., 38(1993), No. 3, p. 138. doi: 10.1179/imr.1993.38.3.138
      [16]
      G.L. Song, Control of biodegradation of biocompatable magnesium alloys, Corros. Sci., 49(2007), No. 4, p. 1696. doi: 10.1016/j.corsci.2007.01.001
      [17]
      O. Lunder, T.K. Aune, and K. Nisancioglu, Effect of Mn additions on the corrosion behavior of mould-cast magnesium ASTM AZ91, Corrosion, 43(1987), No. 5, p. 291. doi: 10.5006/1.3583151
      [18]
      K. Gusieva, C.H.J. Davies, J.R. Scully, and N. Birbilis, Corrosion of magnesium alloys: The role of alloying, Int. Mater. Rev., 60(2015), No. 3, p. 169. doi: 10.1179/1743280414Y.0000000046
      [19]
      H.M. Zhu, C.P. Luo, J.W. Liu, and D.L. Jiao, Effects of Cu addition on microstructure and mechanical properties of as-cast magnesium alloy ZK60, Trans. Nonferrous Met. Soc. China, 24(2014), No. 3, p. 605. doi: 10.1016/S1003-6326(14)63101-0
      [20]
      D.S. Gandel, M.A. Easton, M.A. Gibson, T. Abbott, and N. Birbilis, The influence of zirconium additions on the corrosion of magnesium, Corros. Sci., 81(2014), p. 27. doi: 10.1016/j.corsci.2013.11.051
      [21]
      J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman, Thermo-Calc & DICTRA, computational tools for materials science, Calphad, 26(2002), No. 2, p. 273. doi: 10.1016/S0364-5916(02)00037-8
      [22]
      Thermo-Calc Software, TCMG4 Magnesium Alloys Databases Version 4, Thermo-Calc Software, Stockholm [2020-01-10]. https://thermocalc.com/products/databases/magnesium-based-alloys/
      [23]
      A.V. Koltygin, V.E. Bazhenov, N.V. Letyagin, and V.D. Belov, The influence of composition and heat treatment on the phase composition and mechanical properties of ML19 magnesium alloy, Russ. J. Non-Ferrous Met., 59(2018), No. 1, p. 32. doi: 10.3103/S1067821218010091
      [24]
      V.E. Bazhenov, A.V. Petrova, and A.V. Koltygin, Simulation of fluidity and misrun prediction for the casting of 356.0 aluminum alloy into sand molds, Int. J. Metalcast., 12(2018), No. 3, p. 514. doi: 10.1007/s40962-017-0188-x
      [25]
      A.V. Koltygin, V.E. Bazhenov, E.A. Belova, and A.A. Nikitina, Development of a magnesium alloy with good casting characteristics on the basis of Mg–Al–Ca–Mn system, having Mg–Al2Ca structure, J. Magnes. Alloys, 1(2013), No. 3, p. 224. doi: 10.1016/j.jma.2013.10.002
      [26]
      ASTM International, ASTM Standard G102-89: Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, ASTM International, West Conshohocken, 2015.
      [27]
      M. Qian, D.H. StJohn, and M.T. Frost, Characteristic zirconium-rich coring structures in Mg–Zr alloys, Scripta Mater., 46(2002), No. 9, p. 649. doi: 10.1016/S1359-6462(02)00046-5
      [28]
      L. Yang, X.R. Zhou, M. Curioni, S. Pawar, H. Liu, Z.Y. Fan, G. Scamans, and G. Thompson, Corrosion behavior of pure magnesium with low iron content in 3.5 wt% NaCl solution, J. Electrochem. Soc., 162(2015), No. 7, p. C362. doi: 10.1149/2.1041507jes
      [29]
      J. Gjønnes and C.J. Simensen, An electron microscope investigation of the microstructure in an aluminium–zinc–magnesium alloy, Acta Metall., 18(1970), No. 8, p. 881. doi: 10.1016/0001-6160(70)90016-7
      [30]
      G.A. Song, J.S. Lee, J.S. Park, N.S. Lee, W.H. Lee, and K.B. Kim, Mechanical properties of large-scale Mg–Cu–Zn ultrafine eutectic composites, J. Alloys Compd., 481(2009), No. 1-2, p. 135. doi: 10.1016/j.jallcom.2009.02.113
      [31]
      J. Buha and T. Ohkubo, Natural aging in Mg–Zn(–Cu) alloys, Metall. Mater. Trans. A, 39(2008), No. 9, p. 2259. doi: 10.1007/s11661-008-9545-y
      [32]
      J.D. Robson, D.T. Henry, and B. Davis, Particle effects on recrystallization in magnesium–manganese alloys: Particle pinning, Mater. Sci. Eng. A, 528(2011), No. 12, p. 4239. doi: 10.1016/j.msea.2011.02.030
      [33]
      G.S. Peng, Y. Wang, and Z. Fan, Competitive heterogeneous nucleation between Zr and MgO particles in commercial purity magnesium, Metall. Mater. Trans. A, 49(2018), No. 6, p. 2182. doi: 10.1007/s11661-018-4594-3
      [34]
      V.E. Bazhenov, A.V. Koltygin, M.C. Sung, S.H. Park, Y.V. Tselovalnik, A.A. Stepashkin, A.A. Rizhsky, M.V. Belov, V.D. Belov, and K.V. Malyutin, Development of Mg–Zn–Y–Zr casting magnesium alloy with high thermal conductivity, J. Magnes. Alloys, 9(2021), No. 5, p. 1567. doi: 10.1016/j.jma.2020.11.020
      [35]
      ASM Handbook Committee, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook, Vol. 2, ASM International, Materials Park, OH, 1990.
      [36]
      M. Qian and A. Das, Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains, Scripta Mater., 54(2006), No. 5, p. 881. doi: 10.1016/j.scriptamat.2005.11.002
      [37]
      D. Vinotha, K. Raghukandan, U.T.S. Pillai, and B.C. Pai, Grain refining mechanisms in magnesium alloys—An overview, Trans. Indian Inst. Met., 62(2009), No. 6, p. 521. doi: 10.1007/s12666-009-0088-8
      [38]
      Y.C. Lee, A.K. Dahle, and D.H. StJohn, The role of solute in grain refinement of magnesium, Metall. Mater. Trans. A, 31(2000), No. 11, p. 2895. doi: 10.1007/BF02830349
      [39]
      D.J. Lloyd and S.A. Court, Influence of grain size on tensile properties of Al–Mg alloys, Mater. Sci. Technol., 19(2003), No. 10, p. 1349. doi: 10.1179/026708303225006088
      [40]
      A.K. Dahle, P.A. Tøndel, C.J. Paradies, and L. Arnberg, Effect of grain refinement on the fluidity of two commercial Al–Si foundry alloys, Metall. Mater. Trans. A, 27(1996), No. 8, p. 2305. doi: 10.1007/BF02651885
      [41]
      K.R. Ravi, R.M. Pillai, K.R. Amaranathan, B.C. Pai, and M. Chakraborty, Fluidity of aluminum alloys and composites: A review, J. Alloys Compd., 456(2008), No. 1-2, p. 201. doi: 10.1016/j.jallcom.2007.02.038
      [42]
      H.X. Li, S.K. Qin, Y.Z. Ma, J. Wang, Y.J. Liu, and J.S. Zhang, Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–Zn–Ca alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 800. doi: 10.1007/s12613-018-1628-1
      [43]
      P.J. Wang, L.W. Ma, X.Q. Cheng, and X.G. Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1112. doi: 10.1007/s12613-021-2308-0

    Catalog


    • /

      返回文章
      返回