Cite this article as: |
A.V. Koltygin, V.E. Bazhenov, I.V. Plisetskaya, V.A. Bautin, A.I. Bazlov, N.Y. Tabachkova, O.O. Voropaeva, A.A. Komissarov, and V.D. Belov, Influence of Zr and Mn additions on microstructure and properties of Mg–2.5wt%Cu–Xwt%Zn (X = 2.5, 5 and 6.5) alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1733-1745. https://doi.org/10.1007/s12613-021-2369-0 |
V.E. Bazhenov E-mail: v.e.bagenov@gmail.com
[1] |
K.U. Kainer, Magnesium Alloys and Their Applications, Wiley-VCH Verlag GmbH, Weinheim, 2000.
|
[2] |
A.A. Luo, Magnesium casting technology for structural applications, J. Magnes. Alloys, 1(2013), No. 1, p. 2. doi: 10.1016/j.jma.2013.02.002
|
[3] |
H.C. Pan, Y.P. Ren, H. Fu, H. Zhao, L.Q. Wang, X.Y. Meng, and G.W. Qin, Recent developments in rare-earth free wrought magnesium alloys having high strength: A review, J. Alloys Compd., 663(2016), p. 321. doi: 10.1016/j.jallcom.2015.12.057
|
[4] |
S.H. You, Y.D. Huang, K.U. Kainer, and N. Hort, Recent research and developments on wrought magnesium alloys, J. Magnes. Alloys, 5(2017), No. 3, p. 239. doi: 10.1016/j.jma.2017.09.001
|
[5] |
H. Yu, Y.M. Kim, B.S. You, H.S. Yu, and S.H. Park, Effects of cerium addition on the microstructure, mechanical properties and hot workability of ZK60 alloy, Mater. Sci. Eng. A, 559(2013), p. 798. doi: 10.1016/j.msea.2012.09.026
|
[6] |
X.H. Chen, L.Z. Liu, F.S. Pan, J.J. Mao, X.Y. Xu, and T. Yan, Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg–Zn–Cu–Zr alloys, Mater. Sci. Eng. B, 197(2015), p. 67. doi: 10.1016/j.mseb.2015.03.012
|
[7] |
Y. Zhang, X.F. Huang, Y. Ma, T.J. Chen, Y.D. Li, and Y. Hao, Effects of Cu addition on microstructure and mechanical properties of as-cast Mg–6Zn magnesium alloy, China Foundry, 14(2017), No. 4, p. 251. doi: 10.1007/s41230-017-6094-2
|
[8] |
B.L. Mordike and T. Ebert, Magnesium: Properties—applications—potential, Mater. Sci. Eng. A, 302(2001), No. 1, p. 37. doi: 10.1016/S0921-5093(00)01351-4
|
[9] |
J. Buha, Mechanical properties of naturally aged Mg–Zn–Cu–Mn alloy, Mater. Sci. Eng. A, 489(2008), No. 1-2, p. 127. doi: 10.1016/j.msea.2007.12.006
|
[10] |
L.G. Xu, X.X. Li, J. Ye, X. Ji, H. Qiu, J. Luo, and H.G. Yang, Thermodynamic optimization design of casting Mg–Zn–Cu alloy, Adv. Mater. Res., 852(2014), p. 183. doi: 10.4028/www.scientific.net/AMR.852.183
|
[11] |
I.J. Polmear, Light Alloys: From Traditional Alloys to Nanocrystals, 4th ed., Butterworth-Heinemann, Oxford, 2005.
|
[12] |
M.M. Avedesian and H. Baker, Magnesium and Magnesium Alloys, ASM Specialty Handbook, ASM International, Materials Park, OH, 1999.
|
[13] |
Y.W. Song, E.H. Han, D.Y. Shan, C.D. Yim, and B.S. You, The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys, Corros. Sci., 65(2012), p. 322. doi: 10.1016/j.corsci.2012.08.037
|
[14] |
C. Liu, X.K. Fu, H.B. Pan, P. Wan, L. Wang, L.L. Tan, K.H. Wang, Y. Zhao, K. Yang, and P.K. Chu, Biodegradable Mg–Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects, Sci. Rep., 6(2016), art. No. 27374. doi: 10.1038/srep27374
|
[15] |
G.L. Makar and J. Kruger, Corrosion of magnesium, Int. Mater. Rev., 38(1993), No. 3, p. 138. doi: 10.1179/imr.1993.38.3.138
|
[16] |
G.L. Song, Control of biodegradation of biocompatable magnesium alloys, Corros. Sci., 49(2007), No. 4, p. 1696. doi: 10.1016/j.corsci.2007.01.001
|
[17] |
O. Lunder, T.K. Aune, and K. Nisancioglu, Effect of Mn additions on the corrosion behavior of mould-cast magnesium ASTM AZ91, Corrosion, 43(1987), No. 5, p. 291. doi: 10.5006/1.3583151
|
[18] |
K. Gusieva, C.H.J. Davies, J.R. Scully, and N. Birbilis, Corrosion of magnesium alloys: The role of alloying, Int. Mater. Rev., 60(2015), No. 3, p. 169. doi: 10.1179/1743280414Y.0000000046
|
[19] |
H.M. Zhu, C.P. Luo, J.W. Liu, and D.L. Jiao, Effects of Cu addition on microstructure and mechanical properties of as-cast magnesium alloy ZK60, Trans. Nonferrous Met. Soc. China, 24(2014), No. 3, p. 605. doi: 10.1016/S1003-6326(14)63101-0
|
[20] |
D.S. Gandel, M.A. Easton, M.A. Gibson, T. Abbott, and N. Birbilis, The influence of zirconium additions on the corrosion of magnesium, Corros. Sci., 81(2014), p. 27. doi: 10.1016/j.corsci.2013.11.051
|
[21] |
J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman, Thermo-Calc & DICTRA, computational tools for materials science, Calphad, 26(2002), No. 2, p. 273. doi: 10.1016/S0364-5916(02)00037-8
|
[22] |
Thermo-Calc Software, TCMG4 Magnesium Alloys Databases Version 4, Thermo-Calc Software, Stockholm [2020-01-10]. https://thermocalc.com/products/databases/magnesium-based-alloys/
|
[23] |
A.V. Koltygin, V.E. Bazhenov, N.V. Letyagin, and V.D. Belov, The influence of composition and heat treatment on the phase composition and mechanical properties of ML19 magnesium alloy, Russ. J. Non-Ferrous Met., 59(2018), No. 1, p. 32. doi: 10.3103/S1067821218010091
|
[24] |
V.E. Bazhenov, A.V. Petrova, and A.V. Koltygin, Simulation of fluidity and misrun prediction for the casting of 356.0 aluminum alloy into sand molds, Int. J. Metalcast., 12(2018), No. 3, p. 514. doi: 10.1007/s40962-017-0188-x
|
[25] |
A.V. Koltygin, V.E. Bazhenov, E.A. Belova, and A.A. Nikitina, Development of a magnesium alloy with good casting characteristics on the basis of Mg–Al–Ca–Mn system, having Mg–Al2Ca structure, J. Magnes. Alloys, 1(2013), No. 3, p. 224. doi: 10.1016/j.jma.2013.10.002
|
[26] |
ASTM International, ASTM Standard G102-89: Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, ASTM International, West Conshohocken, 2015.
|
[27] |
M. Qian, D.H. StJohn, and M.T. Frost, Characteristic zirconium-rich coring structures in Mg–Zr alloys, Scripta Mater., 46(2002), No. 9, p. 649. doi: 10.1016/S1359-6462(02)00046-5
|
[28] |
L. Yang, X.R. Zhou, M. Curioni, S. Pawar, H. Liu, Z.Y. Fan, G. Scamans, and G. Thompson, Corrosion behavior of pure magnesium with low iron content in 3.5 wt% NaCl solution, J. Electrochem. Soc., 162(2015), No. 7, p. C362. doi: 10.1149/2.1041507jes
|
[29] |
J. Gjønnes and C.J. Simensen, An electron microscope investigation of the microstructure in an aluminium–zinc–magnesium alloy, Acta Metall., 18(1970), No. 8, p. 881. doi: 10.1016/0001-6160(70)90016-7
|
[30] |
G.A. Song, J.S. Lee, J.S. Park, N.S. Lee, W.H. Lee, and K.B. Kim, Mechanical properties of large-scale Mg–Cu–Zn ultrafine eutectic composites, J. Alloys Compd., 481(2009), No. 1-2, p. 135. doi: 10.1016/j.jallcom.2009.02.113
|
[31] |
J. Buha and T. Ohkubo, Natural aging in Mg–Zn(–Cu) alloys, Metall. Mater. Trans. A, 39(2008), No. 9, p. 2259. doi: 10.1007/s11661-008-9545-y
|
[32] |
J.D. Robson, D.T. Henry, and B. Davis, Particle effects on recrystallization in magnesium–manganese alloys: Particle pinning, Mater. Sci. Eng. A, 528(2011), No. 12, p. 4239. doi: 10.1016/j.msea.2011.02.030
|
[33] |
G.S. Peng, Y. Wang, and Z. Fan, Competitive heterogeneous nucleation between Zr and MgO particles in commercial purity magnesium, Metall. Mater. Trans. A, 49(2018), No. 6, p. 2182. doi: 10.1007/s11661-018-4594-3
|
[34] |
V.E. Bazhenov, A.V. Koltygin, M.C. Sung, S.H. Park, Y.V. Tselovalnik, A.A. Stepashkin, A.A. Rizhsky, M.V. Belov, V.D. Belov, and K.V. Malyutin, Development of Mg–Zn–Y–Zr casting magnesium alloy with high thermal conductivity, J. Magnes. Alloys, 9(2021), No. 5, p. 1567. doi: 10.1016/j.jma.2020.11.020
|
[35] |
ASM Handbook Committee, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook, Vol. 2, ASM International, Materials Park, OH, 1990.
|
[36] |
M. Qian and A. Das, Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains, Scripta Mater., 54(2006), No. 5, p. 881. doi: 10.1016/j.scriptamat.2005.11.002
|
[37] |
D. Vinotha, K. Raghukandan, U.T.S. Pillai, and B.C. Pai, Grain refining mechanisms in magnesium alloys—An overview, Trans. Indian Inst. Met., 62(2009), No. 6, p. 521. doi: 10.1007/s12666-009-0088-8
|
[38] |
Y.C. Lee, A.K. Dahle, and D.H. StJohn, The role of solute in grain refinement of magnesium, Metall. Mater. Trans. A, 31(2000), No. 11, p. 2895. doi: 10.1007/BF02830349
|
[39] |
D.J. Lloyd and S.A. Court, Influence of grain size on tensile properties of Al–Mg alloys, Mater. Sci. Technol., 19(2003), No. 10, p. 1349. doi: 10.1179/026708303225006088
|
[40] |
A.K. Dahle, P.A. Tøndel, C.J. Paradies, and L. Arnberg, Effect of grain refinement on the fluidity of two commercial Al–Si foundry alloys, Metall. Mater. Trans. A, 27(1996), No. 8, p. 2305. doi: 10.1007/BF02651885
|
[41] |
K.R. Ravi, R.M. Pillai, K.R. Amaranathan, B.C. Pai, and M. Chakraborty, Fluidity of aluminum alloys and composites: A review, J. Alloys Compd., 456(2008), No. 1-2, p. 201. doi: 10.1016/j.jallcom.2007.02.038
|
[42] |
H.X. Li, S.K. Qin, Y.Z. Ma, J. Wang, Y.J. Liu, and J.S. Zhang, Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–Zn–Ca alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 800. doi: 10.1007/s12613-018-1628-1
|
[43] |
P.J. Wang, L.W. Ma, X.Q. Cheng, and X.G. Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1112. doi: 10.1007/s12613-021-2308-0
|