Cite this article as:

Langping Zhu, Yu Pan, Yanjun Liu, Zhiyu Sun, Xiangning Wang, Hai Nan, Muhammad-Arif Mughal, Dong Lu, and Xin Lu, Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp.697-706. https://dx.doi.org/10.1007/s12613-021-2371-6
Langping Zhu, Yu Pan, Yanjun Liu, Zhiyu Sun, Xiangning Wang, Hai Nan, Muhammad-Arif Mughal, Dong Lu, and Xin Lu, Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp.697-706. https://dx.doi.org/10.1007/s12613-021-2371-6
引用本文 PDF XML SpringerLink

显微组织特征对粉末热等静压TA15钛合金拉伸性能及断裂韧性的影响

摘要: 粉末热等静压(HIP)是实现高质量复杂薄壁钛合金构件近终形制造的有效解决方法,近年来引起了广泛的关注,但关于微观结构特征对粉末热等静压钛合金强化和增韧机制的报道很少。为此,采用热等静压方法制备粉末TA15钛合金,用于探索不同热等静压温度下的显微组织特征以及相应的拉伸性能和断裂韧性。结果表明,当热等静压温度低于950°C时,合金为由板条集束及板条团簇周围的细小等轴晶组成“网篮组织”。当HIP温度高于950°C时,显微组织逐渐转变为魏氏组织,同时晶粒尺寸显著增加。拉伸强度和伸长率分别从910°C试样的948 MPa和17.3%降低到970°C试样的861 MPa和10%。相应的拉伸断裂模式从穿晶塑性断裂转变为包括晶间解理的混合断裂。试样的断裂韧性从910°C试样的82.64 MPa·m1/2增加到970°C试样的140.18 MPa·m1/2。低于950°C的试样由于原始颗粒边界(PPB)的存在而容易形成孔洞,不利于增韧。由于Widmanstatten结构的裂纹偏转、裂纹分支和剪切塑性变形,950°C以上的试样具有较高的断裂韧性。该研究为粉末HIPed钛合金的研制提供了有效的参考。

 

Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing

Abstract: Powder hot isostatic pressing (HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thin-walled titanium alloy parts, and it has received extensive attention in recent years. However, there are few reports about the microstructure characteristics on the strengthening and toughening mechanisms of powder hot isostatic pressed (HIPed) titanium alloys. Therefore, TA15 powder was prepared into alloy by HIP approach, which was used to explore the microstructure characteristics at different HIP temperatures and the corresponding tensile properties and fracture toughness. Results show that the fabricated alloy has a “basket-like structure” when the HIP temperature is below 950°C, consisting of lath clusters and surrounding small equiaxed grains belts. When the HIP temperature is higher than 950°C, the microstructure gradually transforms into the Widmanstatten structure, accompanied by a significant increase in grain size. The tensile strength and elongation are reduced from 948 MPa and 17.3% for the 910°C specimen to 861 MPa and 10% for the 970°C specimen. The corresponding tensile fracture mode changes from transcrystalline plastic fracture to mixed fracture including intercrystalline cleavage. The fracture toughness of the specimens increases from 82.64 MPa·m1/2 for the 910°C specimen to 140.18 MPa·m1/2 for the 970°C specimen. Specimens below 950°C tend to form holes due to the prior particle boundaries (PPBs), which is not conducive to toughening. Specimens above 950°C have high fracture toughness due to the crack deflection, crack branching, and shear plastic deformation of the Widmanstatten structure. This study provides a valid reference for the development of powder HIPed titanium alloy.

 

/

返回文章
返回