Cite this article as: |
Langping Zhu, Yu Pan, Yanjun Liu, Zhiyu Sun, Xiangning Wang, Hai Nan, Muhammad-Arif Mughal, Dong Lu, and Xin Lu, Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 697-706. https://doi.org/10.1007/s12613-021-2371-6 |
路新 E-mail: luxin@ustb.edu.cn
[1] |
L. Xu, R.P. Guo, Z.Y. Chen, Q. Jia, and Q.J. Wang, Mechanical property of powder compact and forming of large thin-wall cylindrical structure of Ti55 alloys, Chin. J. Mater. Res., 30(2016), No. 1, p. 23.
|
[2] |
R. Baccino, F. Moret, F. Pellerin, D. Guichard, and G. Raisson, High performance and high complexity net shape parts for gas turbines: The ISOPREC® powder metallurgy process, Mater. Des., 21(2000), No. 4, p. 345. doi: 10.1016/S0261-3069(99)00093-X
|
[3] |
Y. Pan, X. Lu, C.C. Liu, T.L. Hui, C. Zhang, and X.H. Qu, Sintering densification, microstructure and mechanical properties of Sn-doped high Nb-containing TiAl alloys fabricated by pressureless sintering, Intermetallics, 125(2020), art. No. 106891. doi: 10.1016/j.intermet.2020.106891
|
[4] |
X. Lu, Y. Pan, W.B. Li, M.D. Hayat, F. Yang, H. Singh, W.W. Song, X.H. Qu, Y. Xu, and P. Cao, High-performance Ti composites reinforced with in situ TiC derived from pyrolysis of polycarbosilane, Mater. Sci. Eng. A, 795(2020), art. No. 139924. doi: 10.1016/j.msea.2020.139924
|
[5] |
X.H. Qu, G.Q. Zhang, and L. Zhang, Applications of powder metallurgy technologies in aero-engines, J. Aeronaut. Mater., 34(2014), No. 1, p. 1.
|
[6] |
N.R. Moody, W.M. Garrison, J.E. Smugeresky, and J.E. Costa, The role of inclusion and pore content on the fracture toughness of powder-processed blended elemental titanium alloys, Metall. Trans. A, 24(1993), No. 1, p. 161. doi: 10.1007/BF02669613
|
[7] |
Y. Pan, W.B. Li, X. Lu, M.D. Hayat, L. Yin, W.W. Song, X.H. Qu, and P. Cao, Microstructure and tribological properties of titanium matrix composites reinforced with in situ synthesized TiC particles, Mater. Charact., 170(2020), art. No. 110633. doi: 10.1016/j.matchar.2020.110633
|
[8] |
Y. Pan, W.B. Li, X. Lu, Y.C. Yang, Y.J. Liu, T.L. Hui, and X.H. Qu, Microstructure and mechanical properties of polycarbosilane in-situ reinforced titanium matrix composites, Rare Met. Mater. Eng., 49(2020), No. 4, p. 1345.
|
[9] |
M.E. Launey and R.O. Ritchie, On the fracture toughness of advanced materials, Adv. Mater., 21(2009), No. 20, p. 2103. doi: 10.1002/adma.200803322
|
[10] |
C.S. Tan, Y.D. Fan, Q.Y. Sun, and G.J. Zhang, Improvement of the crack propagation resistance in an α + β titanium alloy with a trimodal microstructure, Metals, 10(2020), No. 8, art. No. 1058. doi: 10.3390/met10081058
|
[11] |
M. Niinomi and T. Kobayashi, Fracture characteristics analysis related to the microstructures in titanium alloys, Mater. Sci. Eng. A, 213(1996), No. 1-2, p. 16. doi: 10.1016/0921-5093(96)10239-2
|
[12] |
F. Cao, Fatigue Behavior and Mechanisms in Powder Metallurgy Ti–6Al–4V Titanium Alloy [Dissertation], The University of Utah, Salt Lake City, 2016.
|
[13] |
H. Singh, M. Hayat, H.Z. Zhang, R. Das, and P. Cao, Effect of TiB2 content on microstructure and properties of in situ Ti–TiB composites, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 915. doi: 10.1007/s12613-019-1797-6
|
[14] |
L. Wang, Z.B. Lang, and H.P. Shi, Properties and forming process of prealloyed powder metallurgy Ti–6Al–4V alloy, Trans. Nonferrous Met. Soc. China, 17(2007), Suppl. 1, p. s639.
|
[15] |
A.A. Hidalgo, R. Frykholm, T. Ebel, and F. Pyczak, Powder metallurgy strategies to improve properties and processing of titanium alloys: A review, Adv. Eng. Mater., 19(2017), No. 6, art. No. 1600743. doi: 10.1002/adem.201600743
|
[16] |
J.W. Xu, W.D. Zeng, D.D. Zhou, H.Y. Ma, W. Chen, and S.T. He, Influence of alpha/beta processing on fracture toughness for a two-phase titanium alloy, Mater. Sci. Eng. A, 731(2018), p. 85. doi: 10.1016/j.msea.2018.06.035
|
[17] |
M. Niinomi and T. Kobayashi, Toughness and strength of microstructurally controlled titanium alloys, ISIJ Int., 31(1991), No. 8, p. 848. doi: 10.2355/isijinternational.31.848
|
[18] |
X. Wen, M.P. Wan, C.W. Huang, and M. Lei, Strength and fracture toughness of TC21 alloy with multi-level lamellar microstructure, Mater. Sci. Eng. A, 740-741(2019), p. 121. doi: 10.1016/j.msea.2018.10.056
|
[19] |
R.P. Guo, L. Xu, J. Wu, R. Yang, and B.Y. Zong, Microstructural evolution and mechanical properties of powder metallurgy Ti–6Al–4V alloy based on heat response, Mater. Sci. Eng. A, 639(2015), p. 327. doi: 10.1016/j.msea.2015.05.041
|
[20] |
H.W. Wang, Z.J. Guo, and J. Wang, Study on microstructure and fracture toughness of TA15 alloy, Rare Met. Mater. Eng., 34(2005), Suppl. 3, p. 293.
|
[21] |
H.E. Dève, A.G. Evens, and D.S. Shih, A high-toughness γ-titanium aluminide, Acta Metall. Mater., 40(1992), No. 6, p. 1259. doi: 10.1016/0956-7151(92)90425-E
|
[22] |
K. Zhang, J. Mei, N. Wain, and X. Wu, Effect of hot-isostatic-pressing parameters on the microstructure and properties of powder Ti–6Al–4V hot-isostatically-pressed samples, Metall. Mater. Trans. A, 41(2010), No. 4, p. 1033. doi: 10.1007/s11661-009-0149-y
|
[23] |
C. Cai, B. Song, P.J. Xue, Q.S. Wei, C.Z. Yan, and Y.S. Shi, A novel near α-Ti alloy prepared by hot isostatic pressing: Microstructure evolution mechanism and high temperature tensile properties, Mater. Des., 106(2016), p. 371. doi: 10.1016/j.matdes.2016.05.092
|
[24] |
R.P. Guo, L. Xu, Z.Y. Chen, Q.J. Wang, B.Y. Zong, and R. Yang, Effect of powder surface state on microstructure and tensile properties of a novel near α-Ti alloy using hot isostatic pressing, Mater. Sci. Eng. A, 706(2017), p. 57. doi: 10.1016/j.msea.2017.08.096
|
[25] |
Q. Wang, Z. Wen, C. Jiang, B. Wang, and D.Q. Yi, Creep behaviour of TA15 alloy at elevated temperature, Mater. Sci. Eng. Powder Metall., 19(2014), No. 2, p. 171.
|
[26] |
S.K. Li, S.X. Hui, W.J. Ye, Y. Yu, and B.Q. Xiong, Effects of microstructure on damage tolerance properties of TA15 ELI titanium alloy, Chin. J. Nonferrous Met., 17(2007), No. 7, p. 1119.
|
[27] |
J.P. Hirth and F.H. Froes, Interrelations between fracture toughness and other mechanical properties in titanium alloys, Metall. Trans. A, 8(1977), No. 7, p. 1165. doi: 10.1007/BF02667402
|
[28] |
F.W. Chen, Y.L. Gu, G.L. Xu, Y.W. Cui, H. Chang, and L. Zhou, Improved fracture toughness by microalloying of Fe in Ti–6Al–4V, Mater. Des., 185(2020), art. No. 108251. doi: 10.1016/j.matdes.2019.108251
|
[29] |
Z.F. Shi, H.Z. Guo, J.W. Zhang, and J.N. Yin, Microstructure–fracture toughness relationships and toughening mechanism of TC21 titanium alloy with lamellar microstructure, Trans. Nonferrous Met. Soc. China, 28(2018), No. 12, p. 2440. doi: 10.1016/S1003-6326(18)64890-3
|
[30] |
A. Ghosh, S. Sivaprasad, A. Bhattacharjee, and S.K. Kar, Microstructure–fracture toughness correlation in an aircraft structural component alloy Ti–5Al–5V–5Mo–3Cr, Mater. Sci. Eng. A, 568(2013), p. 61. doi: 10.1016/j.msea.2013.01.017
|
[31] |
N.L. Richards, Quantitative evaluation of fracture toughness–microstructural relationships in alpha–beta titanium alloys, J. Mater. Eng. Perform., 13(2004), No. 2, p. 218. doi: 10.1361/10599490418424
|
[32] |
X.H. Shi, W.D. Zeng, and Q.Y. Zhao, The effects of lamellar features on the fracture toughness of Ti-17 titanium alloy, Mater. Sci. Eng. A, 636(2015), p. 543. doi: 10.1016/j.msea.2015.04.021
|
[33] |
T. Horiya, H.G. Suzuki, and T. Kishi, Effect of microstructure and impurity content on microcrack initiation and extension properties of Ti–6Al–4V alloys, Tetsu-to-Hagane, 75(1989), No. 12, p. 2250. doi: 10.2355/tetsutohagane1955.75.12_2250
|
[34] |
Y. Kawabe and S. Muneki, Strengthening and toughening of titanium alloys, ISIJ Int., 31(1991), No. 8, p. 785. doi: 10.2355/isijinternational.31.785
|
[35] |
N.L. Richards, Prediction of crack deflection in titanium alloys with a platelet microstructure, J. Mater. Eng. Perform., 14(2005), No. 1, p. 91. doi: 10.1361/10599490522176
|
[36] |
Q.L. Zhang and X.W. Li, Effect of structure on fatigue properties and fracture toughness for TA15 titanium alloy, J. Mater. Eng., 2007, No. 7, p. 3.
|